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Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent
years, with highly promising results. This approach, however, relies on a large number of atlases with accurate
and consistent structural identifications. Here, we introduce our atlas inventories (n = 90), which cover ages
4–82 years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas
library resource provides theflexibility to choose appropriate atlases for various studieswith different age ranges
and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the
improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match
the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection
principles, is expected to support the further development of multi-atlas image segmentation.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Quantitative analysis of brain MRI data has played a pivotal role in
many brain anatomical studies of development, aging, andvarious path-
ological conditions. For image-based quantification, the first and the
most important step is to define corresponding brain locations across
all participants of the study. One of the most common approaches,
which is considered the gold standard in neuroanatomy, is the manual
delineation of regions of interest (ROIs). However, because it is labor
intensive, manual delineation is usually used for hypothesis-driven
studies, in which a small number of target structures are preselected
based on a hypothesis. Voxel-based analysis (VBA) is a widely used al-
ternative approach, in which every single voxel is considered an ROI,
and corresponding voxel locations are identified across all participants
automatically using an image normalization method (Ashburner,
2009; Worsley et al., 1999). Whole-brain structural segmentation is an
alternative approach, in which the voxels are joined based on a priori
anatomical knowledge, e.g., voxels that belong to the caudate should
the following grants: NS084957,

chool of Medicine, Traylor 330,
410 614 1948.
be joined as one structure (Faria et al., 2010; Fischl et al., 2002;
Heckemann et al., 2006; Joshi et al., 2004; Mori et al., 2005; Pham and
Prince, 1999; Tu et al., 2008; Tustison et al., 2014; Tzourio-Mazoyer
et al., 2002; Woolrich et al., 2009). If the entire brain is segmented
into multiple structures, both VBA and segmentation-based methods
provide the information about the anatomical features of the entire
brain, but from very different granularity levels; in the segmentation-
based approach, the information from more than 106 voxels in VBA is
greatly reduced to the order of 102.

Themeaningof “atlas” varies depending on researchfields and study
purposes and, thus, clarification is needed. The typical brain atlas con-
sists of images (e.g. histology or MRI) and point-and-annotate labels,
describing the locations and names of brain structures. For VBA, atlases
mean MR images in specific orientations, positions, and matrix coordi-
nates. They usually do not contain structural labels but the x, y, and z
coordinates carry the common anatomical meaning. The images could
be chosen within a study or external data such as those from Interna-
tional Consortium of Brain Mapping (ICBM). The MNI coordinates are
one of the most widely used standard coordinates and the image
could be single-subject such as MNI-Colin27 (Collins et al., 1998) or
population-averaged such as linear and nonlinear MNI-ICBM152
(Fonov et al., 2011; Mazziotta et al., 2001). For the segmentation-
based analysis (and throughout this paper), the atlasmeansMRI images
with structural labels with three-dimensional boundaries, which carry
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anatomical references to define structures of interest. One of the sim-
plest approaches to accomplish automated brain segmentation is to
warp a single-subject atlas to each subject and transfer the structure
labels (Fischl et al., 2002).

In recent years, a multiple-atlas approach has gained popularity due
to its superior segmentation accuracy (Artaechevarria et al., 2009; Jia
et al., 2012; Langerak et al., 2010; Lotjonen et al., 2010b; Sabuncu
et al., 2010; van Rikxoort et al., 2010; Wang et al., 2012; Warfield
et al., 2004). In this approach, rather than one reference brain atlas,mul-
tiple atlases with consistent structural segmentation are prepared,
warped to a subject image, and the multiple segmentation results are
fused to achieve the best estimation of the structural identification.
Numerous publications have reported improved accuracy using this ap-
proach. Most of these previous papers have focused on the algorithms
used to fuse the multiple segmentation results. The multiple-atlas ap-
proach, however, depends on the availability of atlases with accurate
and consistent structural definitions, which is not only labor-intensive,
but also has several important issues to be addressed.

For example, one of the most frequently asked questions is how
many atlases are needed to improve the segmentation accuracy. Aljabar
et al. (Aljabar et al., 2009) has shown that the segmentation accuracy
reaches maximum with 15–25 atlases depending on the target struc-
tures. However, probably, there is no general answer to this question,
because it depends on the anatomical variability among the atlases
and the anatomical features of the subject. In an extreme case, if the
anatomy of the subject is an outlier, with respect to the anatomical
ranges covered by themultiple atlases, we cannot expect high accuracy
regardless of the number of atlases used. This naturally extends to the
notion of atlas pre-selection based on anatomical or non-anatomical
features, such as the ventricle size or age-matching. Another important
issue is the way in which anatomy is defined. The minimum definable
units are determined by the available anatomical features and contrasts;
it is difficult to sub-divide, for example, the globus pallidus (GP) into the
internal and external portions, unless MRI provides contrasts to define
these intra-GP structures. For segmentation-based analysis, the finer
definitionsmaynot always be better. For example, if the entire temporal
lobe has 10% atrophy, a report of the volume loss of a dozen of sub-
structures within the temporal lobe could not only hurt the statistical
power but also result inmisleading findings about the regional specific-
ity of the abnormality if the atrophy was statistically detected only in a
subset of the constituents. Thus, it is important to test regional specific-
ity by examining larger super structures, such as lobes and hemispheres.

The purpose of this study is to establish a shared atlas resource to
support multi-atlas segmentation algorithms for quantitative analyses
of brain MR images and test the accuracy levels as well as the efficacy
of atlas pre-selection approaches such as dynamic age-matching,
which is enabled by the availability of the wide range of the age cover-
age. In this paper, we introduce our atlas inventories (n = 90) with
unique hierarchical structural definitions, which cover ages 4–85
years. The atlas set can be combined with various available multi-atlas
fusion algorithms. In addition, we tested the impact of age-matching
on the accuracy of the segmentation.

Materials and methods

Overview of atlas creation strategy

For neuroanatomical studies, the manual delineation of structures
by experienced neuroanatomists is considered the gold standard,
against which the performance of automated segmentation is mea-
sured. However, a recent survey about protocols for themanual delinea-
tion of the hippocampus found as much as 250% of volume differences
(Boccardi et al., 2011). These differences stem from anatomical defini-
tions; it is not that one is correct and the others are inaccurate. In addi-
tion, anatomy often does not have boundaries. Even with histology, at a
cellular-level definition, the boundary of a structure could change or
overlap with adjacent structures depending on staining methods and
specific cell types of interest. With only 15 MB of information stored
in a typical T1-weighted anatomical image, cellular-level validation of
structural boundaries is ill-posed and, thus, the segmentation process
should be considered an engineering procedure that allows us to com-
pare brains in a systematic manner, rather than a tool to find a ground
truth. In this respect, we are interested in the precision (reproducibility)
of the measurement as a tool, rather than in a quest to achieve the best
possible accuracy (validity). The pre-segmented atlases serve as one of
the references for structural definitions to pose anatomical boundaries
with consistent criteria.

With manual delineation by an experienced rater, we invite several
precision-related issues: intra-rater (delineate the same imagemultiple
times); inter-rater (different raters delineate the same image); and
inter-measurement (scan the same person multiple times) variability.
With fully automated segmentation tools, we can eliminate the intra-
rater and inter-rater variability. However, there is still a segmentation
accuracy issue. Please note that there are two types of accuracy. The
first is the accuracy of a segmentation protocol (e.g., the boundaries
defined in an atlas), which, as mentioned above, is an elusive goal.
The second accuracy question is whether the automated segmentation
result delivers the boundary definitions that agree with the protocol.
When we measure the performance of automated segmentation tools,
this second type of accuracy issue and the inter-measurement precision
become the two important questions. While these goals are usually the
target of algorithm development, it is not widely recognized that the
atlas creation strategy (i.e., segmentation strategy) also has an impact
on the performance of the algorithm; thus, the algorithm and atlas
development should evolve hand-in-hand. The comprehensive descrip-
tion of our protocols for structural definitions can be found at braingps
mricloud.org/atlasrepo. Below, a couple of important strategies are
described.

Atlas creation strategy I: the minimum unit
The minimum unit (or the maximum numbers of the unit) we can

define is one voxel, which is the unit VBA uses. The most natural way
to join voxels and define a structure is to use a hypothesis- or biology-
driven approach. For example, one may be interested in the dentate
gyrus of the hippocampus or the substantia nigra of Parkinson's disease
patients. However, image resolution and available contrasts pose practi-
cal limitations to this approach; in reality, these image-based factors
dictate the structure we can define. In Fig. 1A and B, images from diffu-
sion tensor imaging (DTI) and T1 weighting are compared for the same
person at the same slice level at the pons. All the defined structures in
the pons are visually appreciable in the DTI image, while the pons
lacks contrasts in the T1 image. If there are no anatomical clues to define
these structures, such as the substructures in the pons of a T1-weighted
image, it would be difficult to pre-segment these structures accurately
in the atlas and tomeasure their volumes; the results reflect the algorithm
parameters, such as elasticity, smoothing of the transformation field, and
interpolation. Apparently, the definable minimum units depend on avail-
able contrasts and imaging modality. The image contrast is not the only
anatomical clue. For example, as shown in Fig. 1C, the anterior limb and
posterior limb of the internal capsule are both white matter structures,
and their boundary cannot be defined by their contrasts, but they can
be separated based on anatomical features (the sharp bend and feature-
rich surrounding gray matter anatomy). Therefore, it is reasonable to
separate them at the genu (the kink) of the internal capsule.

Atlas creation strategy II: incorporation of hierarchical definitions based on
ontology

The definable minimum structures depend on the image modality.
The DTI allows finer structural definitions of the white matter and T1-
weighted images can define more gray matter structures due to the
higher image resolution. This means pre-segmented brain atlases must
be created for each modality. One way to introduce a systematic
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Fig. 1.Examples of the relationship between anatomical features anddefinable structures. TheDirection-encoded colormap fromDTI (A) and the T1-weighted image (B) obtained from the
same person at the same slice level at the pons. Magnified views of the pons are shown in the insets. These images show the importance of anatomical contrasts to define structures of
interest. On the other hand, availability of contrasts is not always a necessary factor to define a structure. For example, in (C), the anterior limb and theposterior limb of the internal capsule
share the similar image intensities, but they can still be separated at the genu (the kink) of the internal capsule based on the anatomical clue; the sharp bend and feature-rich surrounding
gray matter anatomy.
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management of anatomical structure is to introduce a hierarchical struc-
tural relationship based on the ontology. For example, brain atlases and
the anatomical literature (Mai et al., 2007a; Puelles et al., 2013) define
how various structures should be hierarchically grouped. Based on the
minimum units described above, higher hierarchical levels (superstruc-
tures) can be defined by joining the units, according to (Mai et al.,
2007b). Fig. 2 shows images of our hierarchical relationship defined in
five different levels. For the pons, for example, level 5 defines too many
intra-pons structures for the T1 images. The volume measurements
should employ level 4 and higher in this case. Themulti-level hierarchical
relationship is also important for examining the specificity of anatomical
findings. For example, if one measures the hippocampus and finds a 10%
volume loss, s/he may conclude “this disease causes hippocampal atro-
phy.” However, the anatomical interpretation may change if the same
Level 1 Level 2 Level 3
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Mesencephalon

Metencephalon

Myelencephalon

Cerebral cortex

Cerebral nuclei

White matter
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Fig. 2. Hierarchical relationship defined at five different levels. (A) An image representation of
telencephalon at level 1 to the anterior/dorsal/posterior cingulate cortex at level 5. The structu
defined in a finer unit as the level goes up.
amount of atrophy is found at higher hierarchical levels such as the entire
limbic system, the gray matter, or the hemisphere. The hierarchical anal-
ysis, therefore, is important for examining the regional specificity of the
findings. Our recentmulti-ontology-level analysis confirmed expected re-
sults about the relationship between the precision (test–retest reproduc-
ibility) and ontology levels when they were used for automated multi-
atlas brain segmentation (Djamanakova et al., 2014). As the level went
up (thus, fewer defined structures and more voxel grouping), the preci-
sion went up, saturating at about 1.5% test–retest reproducibility using
T1-weighted images with 1 mm resolution. At level 5, approximately
20% of the defined structures are smaller than 1000 mm3, which result-
ed in substantially poorer precision, mostly in the 3–10% range. Of
course, the gain in precision comes at the cost of the loss of region-
specific information.
Level 4 Level 5

ortex
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the five-level structural delineation. (B) An example of the hierarchical definitions in the
res defined by a red color are indicated in the images, describing how the structures are
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The hierarchical relationship can be described by a structure-
relationship table, with 286 structures listed in Appendix 1. In our sys-
tem, this relationship can be readilymodified by users andwe currently
offer two types of relationships (Type I and II), as will be described in
the Results section.

Atlas creation

There are four different sources of data, each covering different
age ranges with different protocols. All data were acquired using
the MPRAGE sequences provided by the manufacturers, as specified
below. The in-plane resolution was 1.0–1.1 mm and the second phase-
encoding resolution was 1.0–1.5 mm.

Adult atlas
These datawere acquired at JHU using 3 T Philips scanners. The Adult

atlases consist of 47 subjects (41 normal subjects and six Alzheimer's dis-
ease patients) with an age range of 22–82 years (49.3 ± 20.9 years).

Pediatric atlas
Pediatric-I: These data were acquired at JHU using the same scan-
ners as in the Adult Atlas. This atlas set consists of 19 pediatric
cases with an age range of 8–12 years (10.0 ± 1.1 years).

Pediatric-II: These datawere acquired at JHUusing Siemens 3 T scan-
ners. This atlas set consists of 11 pediatric cases with an age range of
8–18 years (11.5 ± 3.2 years).
Pediatric-III: These data were obtained from PING (Pediatric Imag-
ing, Neurocognition, and Genetics, http://pingstudy.ucsd.edu/) and
a mixture of images acquired on 3 T Siemens and Philips scanners.
The scan information can be found at http://pingstudy.ucsd.edu/
resources/neuroimaging-cores.html. This atlas set consists of 13 sub-
jects with an age range of 4–8 years (6.7 ± 1.3 years).

A subset of the Adult atlases were initially segmented using our
single-subject atlas (Oishi et al., 2009), which was warped to individual
subjects using DiffeoMap (www.mristudio.org), followed by manual
corrections based on the criteria described previously (Faria et al.,
2015; Oishi et al., 2009). For pediatric and elderly atlases, substantial
manual correctionsweremade to ensure accurate structural definitions
(Faria et al., 2010; Oishi et al., 2013). Once a set of multiple atlases were
established, all other data were segmented bymulti-atlas segmentation
with general age-matching (adult atlases for adult brains, and pediatric
atlases for pediatric brains), followed by manual corrections. The list of
the defined structures is in the Appendix, and their ontology-based
hierarchical relationship based on (Mai et al., 2007a) (Version 6.12) is
posted atwww.mricloud.org. These images and hierarchical relationships
can be interactively visualized by using RoiEditor (www.mristudio.org),
as described in the Results section.

Atlas fusion algorithms

We tested twomulti-atlas fusion algorithms in this study. Most of the
analyses were performed using the fully-automated MriCloud pipeline
(www.mricloud.org), which is based on the Diffeomorphic Multi-Atlas
Likelihood Fusion (DMALF) algorithm (Tang et al., 2013). The pipeline
uses Large Deformation Diffeomorphic Metric Mapping (LDDMM) for
image registration (Ceritoglu et al., 2010). The input to the pipeline is un-
processed raw MPRAGE images and multiple atlases were registered to
the input image using LDDMM, followed by DMALF-based atlas fusion.
The details of DMALF and LDDMM can be found elsewhere (Tang et al.,
2013; Tang et al., 2014). To investigate the generalizability of our findings
(e.g., the effect of atlas age-matching), we also used a joint fusion algo-
rithm (Wang et al., 2012), developed at PICSL (Penn Image Computing
& Science Lab, www.picsl.upenn.edu/), for which we fed the same atlas
sets, after LDDMM-based registration to the test data. The joint fusion-
based atlas fusion is also available in www.mricloud.org.

MRI data used in this study

In this study andmany others (Aljabar et al., 2009; Lotjonen et al.,
2010a; Rohlfing et al., 2004), the manually corrected atlases were di-
vided into the atlases and test data to test the segmentation accura-
cy. To evaluate the importance of age-matching, we tested two
different approaches. First, we tested conventional “binned” atlas ap-
proaches; the “Pediatric atlas” with ten atlases randomly drawn from
the Pediatric-I and Pediatric-II (age 8–12 years old, average = 10.1 ±
1.4 years old) and the “Adult atlas”with ten atlases from the Adult atlas
set (age 22–82 year old, average = 49.8 ± 24.2 years old) were used.
The large number of the atlases also enabled us to test a dynamically
age-matched approach, in which the entire atlases (n = 90) were
pooled, five data were chosen at 5, 8, 10, 15, 25, 40, 60, 80 years old as
test data and ten atlases with closest age range were selected as age-
matched atlases for each age level (Table 1). Narrower age levels were
tested for the younger brains (5, 8, 10, 15 years old), compared to the
adult brains (25, 40, 60, 80 years old), considering that the brain actively
develops during early stages and gradually stabilizes in adulthood.

Data analysis

Because these test data (a part of the atlases) havemanually-defined
segmentation results, the accuracy of the automated multi-atlas seg-
mentation can be measured from the extent of spatial matching with
pre-defined structures in the atlases. Here we used DICE (Dice, 1945)
measurement, which is the ratio between the intersection area A∩B
and the union of AUB, where A and B denote the manual and the auto-
mated segmentations. Results were presented as mean ± standard
error of the mean (SEM). The differences in DICE between the three
atlas sets (pediatric, adult, and age-matched) were evaluated using
one-way analysis of variance (ANOVA) for each age level and each
structure, or two-way ANOVA for each structure and correction for
age levels, followed by post-hoc Bonferroni's multiple comparison
tests. A p value b 0.01 was considered significant and p b 0.05 was con-
sideredweakly significant. To assess the effects of age-matching and the
fusion algorithm, we used a two-way ANOVA followed by post-hoc
Bonferroni's tests. In this study, the following structures were used to
measure the accuracy:

Deep gray matter structures: the caudate, the putamen, the globus
pallidus, the hippocampus, and the amygdala, which were defined
at Type I — Level 5.

Cortex: the entire cortex, which was defined at Type I — Level 2.
White matter structures: the cerebral peduncle, the anterior and
posterior limb of internal capsule, and body of the corpus callosum,
which were defined at Type I — Level 5.
Ventricles: the entire lateral ventricles, which were defined at Type
I — Level 2.

These structures were chosen because they are relatively easier to
define due to clear contrast boundaries.

Results

Ontology definition, reporting, and visualization system

The current version of the atlases, Version 6.12, defines 286 structures.
As we expect the number of the atlases to increasewith frequent updates
in the future, we adopted a version control system by Git (www.github.
com/git), which can be accessed through braingps.mricloud.org/git/
gitweb.cgi. Through this system, users can have access to the latest, as
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Table 1
MRI data used in the atlas age-matching study. Five subjects at 5, 8, 10, 15, 25, 40, 60, and 80 years of age were drawn from the atlas pool as test data. Age-matched atlases comprised ten
atlases with the closest age range for each age level, as specified.

Subject (n = 5) Age-matched atlas (n = 10) Pediatric atlas (n = 10) Adult atlas (n = 10)

5 years (range 4–5 years) 4–8 years 8–12 years 32–82 years
8 years 6–10 years 8–12 years 32–82 years
10 years 8–12 years 8–12 years 32–82 years
15 years (range 12–18 years) 10–20 years 8–12 years 32–82 years
25 years (range 25–26 years) 20–30 years 8–12 years 32–82 years
40 years (range 38–42 years) 30–50 years 8–12 years 32–82 years
60 years (range 57–63 years) 50–70 years 8–12 years 32–82 years
80 years (range 79–82 years) 70–80 years 8–12 years 32–82 years
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well as previous versions of the atlases. The list of the 286 structures are
shown in the Appendix. The comprehensive ontological relationship can
be downloaded, viewed, and modified from the atlas repository (https://
braingps.mricloud.org/atlasrepo) and also is included in the outputs of
the image segmentation tools at MriCloud. As shown in Fig. 3, RoiEditor
has an interface to read the ontology relationship file and interactively
visualize the brain segmentation results at each ontology level. It also
allows users to save a quantitative report (volumes and intensities of
defined structures) and ROI definition files at each level. Currently, two
types (Type I and II) of hierarchical relationships are offered and available
in www.mricloud.org, in which the 286 structural units are combined to
define different superstructures (Fig. 4). For example, at the lowest ontol-
ogy level, Type I defines seven classical definitions of the brain ontology
(telencephalon (right and left), diencephalon (right and left), mesen-
cephalon, metencephalon, and myelencephalon), while Type II defines
four structures that are widely used in clinical descriptions (hemispheres
Numerical report

Save ROI files

Fig. 3.A screenshot of the RoiEditor (www.mristudio.org) interface to read the ontology relation
provides the ability to save a quantitative report (volumes and intensities of defined structure
(right and left), cerebellum, and brainstem). For example, the meten-
cephalon includes the pons and the cerebellum, which share the same
developmental precursor, while the brainstem and the cerebellum
are often defined as different entities in image research. The ontology
relationship defined in the text file can be readily modified by users to
create superstructures that could better serve users' clinical hypotheses.

The effect of the age-matching

The effects of age-matching on the segmentation accuracy are
shown in Fig. 5 for the structures that had strong age effects. Compared
to the pediatric atlas and the adult atlas, the age-matched atlas consis-
tently showed superior performance across different age levels for the
cerebral cortex, the caudate, and the ventricles. The statistical analysis
detected significant differences between the age-matched approach
and the binned atlases at several age levels (Fig. 5A). Considering test
Hierarchical tree

Ontology selector

ship file and interactively visualize the brain segmentation results at each ontology level. It
s) and ROI definition files at each level.
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Fig. 4. Demonstration of two types (Type I and II) of hierarchical relationships at two ontology levels.
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subjects at all ages, two-way ANOVA analysis showed a prominent
effect of age-matching (p b 0.001 for the cortex and caudate, and
p b 0.01 for the lateral ventricles). The pediatric atlas performed well
for the 8- and 10-year-old subjects. It also achieved a high level of accura-
cy up to 40 years of age, but the performance quickly deteriorated for over
60 years of age where significant atrophy develops. The adult atlas per-
forms generallywell for adult brains up to teenagers (15-year-old). Please
note that theDICE values of the ventricles tend to increase over age,which
is likely due to their increased sizes in the elderly population; as is the na-
ture of the DICE, smaller and narrower objects tend to have lower DICE.

We also compared the performance of two multi-atlas fusion
methods — DMALF and joint fusion in the five-year-old subject group
(Fig. 5B). Our observations were independent of the algorithms. Two-
way ANOVA analysis was performed on the effects of the age and the
fusion algorithm, which revealed a significant effect of age-matching
(p=0.0007, p=0.012, and p=0.079 in the cortex, caudate, and lateral
ventricles, respectively), but no significance on fusion methods (p N 0.3).
The result indicated the importance of age-based atlas pre-selection, and
less impact of the fusion methods.

In the other deep gray matter structures, such as the hippocampus,
amygdala, putamen, and globus pallidus, the improvement of DICE
with the age-matched atlas was less prominent (Fig. 6). All atlas sets
performed stably well across different age levels (DICE N 0.86 and 0.88
for the hippocampus and the amygdala, and N0.9 for the putamen and
the globus pallidus), except when the pediatric atlas was used for sub-
jects over 60 years of age or the adult atlas was used for subjects
under 10 years of age. The observation was similar in the white matter
structures (Fig. 7), such as the body of the corpus callosum (BCC), the
cerebral peduncle (CP), the anterior limb of the internal capsule
(ALIC), and the posterior limb of the internal capsule (PLIC). On average,
DICE was over 0.87 if the atlas age was generally matched. ANOVA
analysis indicated that these structures are less sensitive to atlas age-
matching (p N 0.05, except for the hippocampus, amygdala, and BCC
in the 80-year-old subjects). Overall, taking all the data together
(Figs. 5–7), the effect of atlas age-matching was statistically significant
(p b 0.0001), using a multiple ANOVA and correcting for the different
structures and subject ages.

Discussion

Overview of the atlas creation

In this paper, we introduced our multiple atlas library of T1-weighted
brainMR images. This librarywas developed to supportmulti-atlas image
segmentation tools, which are currently a target of highly active research.
As the atlas library serves as a teaching file for computer algorithms to
judgewhich structures are locatedwhere andwithwhat type of anatom-
ical signatures, the availability of atlases with high-quality segmentation
is essential. To achieve better segmentation accuracy, the atlas creation
strategy (knowledge creation) could be as important as algorithm
improvements (knowledge application). Many modern segmentation
algorithmsutilize not only location, but also intensity information to iden-
tify a structure of interest. If each target structure is defined in the atlas
with a narrowly defined intensity histogram, such algorithms could
place a high level of weighting on the image contrast to accurately define
the boundary. Therefore, the way atlases are created certainly affects the
performance of the multi-atlas algorithms. Another example is the effect
of space occupancy. Many labeling algorithms assign labels aggressively
(greedily) to voxels. If there are brain regions that are not labeled (vacant
regions) in the atlases, the labels of nearby structures could leak into such
regions. Therefore, it is important to assign structures even when such
structures are not an interest of the research work.

One of the most common questions about brain atlases is, “which
atlas is themost appropriate formy study?” For example, in the conven-
tional atlas-based analysis, ICBM-152 in the MNI coordinate system is
widely used, which was created by averaging images from 152 healthy
adult volunteers. Is it appropriate to use this atlas for geriatric popula-
tions with pronounced atrophy? Or can we use this atlas as a target in
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studies of teenagers? In themulti-atlas regime, the images from the 152
subjects are not averaged to create one population-averaged atlas. One
drawback of this approach is that all images from the 152 subjects need
to be segmented with consistent criteria. However, we would gain a
flexibility to choose atlases that are most appropriate for the study pop-
ulation from the 152 atlases. These pre-selection criteria could be sub-
ject attributes such as age, gender, or race, or could be image features,
such as the level of atrophy. Among these criteria, our anatomical
knowledge indicates that age should be one of the largest factors that
influence the brain anatomy (Faria et al., 2010; Gogtay et al., 2004;
Good et al., 2001; Huang et al., 2006; Shaw et al., 2008).

Atlas library as a resource

The first aim of this paperwas to introduce ourmultiple-atlas library
and provide detailed descriptions. Inmany cases, the notion of the brain
structures is merely a concept because what we call “brain structures”
or “anatomical names” often do not have clear boundaries in the cellular
level. This is especially so for the white matter structures. For example,
the corpus callosum can only be clearly demarcated at the mid-sagittal
level, and there is no clear definition laterally; axons continue to the cor-
tical regions. This can also be applied to many gray matter structures.
For example, at a microscopic level, the caudate does not have a bound-
ary at the lateral surface; there is only a continuum to theputamen, pen-
etrated by the axons in the internal capsule. Therefore, it is often not
possible to “accurately define” or “validate” a brain structure. In this
respect, the role of the brain atlas is to apply a consistent anatomical
definition to all study populations. The anatomical definitions in our
atlas library is an extension of our previous work (Mori et al., 2008;
Oishi et al., 2008), which was, in turn, defined based on the past
literature as consistently as possible (Mazziotta et al., 1995; Toga
and Mazziotta, 2002).

One unique aspect of our atlas is the availability of ontological rela-
tionships for the 286 defined structures. Based on these relationships,
superstructures can be created to test the regional specificity of anatom-
ical findings. This relationship is defined in a text file and can be readily
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modified by users. The graphical interface by RoiEditor makes such
modification and inspection straightforward. All resources are available
through www.mristudio.org (RoiEditor) and www.mricloud.org (atlas
resources).

One important issue about the proposed atlas resource is that it con-
sists of data from multiple sources with different types of the scanners
and image protocols. Ideally, atlases and test data share exactly the
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same data acquisition parameters but generating fully-segmented
atlases for each study could be impractical. In many atlas-based analy-
ses, including VBA, it is common to employ external atlases. For exam-
ple, most of the MNI-ICBM atlas resources were based on MR images
from 1.5 T scanners, while many modern MRI studies use 3 T scanners.
Therefore, the mismatch of the data acquisition protocols between the
external atlases and users' data is a common issue for many studies,
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which should beminimized through image pre-processing or advanced
registration tools. On the other hand, the heterogeneity of data acquisi-
tion parameters within a multiple-atlas library poses a unique problem.
It is not immediately clear how important it is to acquire all data within
a librarywith exactly the same parameters, given the variability in other
demographic information (Liang et al., 2015). In reality, it is difficult to
obtain an image library that spans the entire age-range with a single set
of data acquisition parameters. One potential issue is, if one uses age-
matched atlases for two subjects with very different ages, the two age-
matched atlas sets could consist of different proportions of, for example,
scanner manufacturers, which could introduce a certain amount of bias
in the segmentation results. Although this (inclusion of substantially
different age groupswithin a same study) rarely happens in conventional
research studies, we need to be aware of this type of shortcomings of our
atlas resources. In the future, as the number of atlases increase, it could
become possible to pre-select atlases not only by their ages or anatomical
features, but also data acquisition parameters.
Evaluation of age-matching

The second purpose of the study was to evaluate the effect of age-
matching. Dynamic age-matching, inwhich atlaseswith the ages closest
to the subject are dynamically selected based on the subject age, is a
relatively new approach and it is possible only when a large number
of atlases are available for a wide range of ages. In this paper, we tested
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Atlas age-matching has been reported as one of the most important
atlas pre-selection criteria (Aljabar et al., 2009). Brains of similar ages
usually share similar anatomical features, such as the shape of the CSF
space, ventricle sizes, and graymatter/whitematter anatomy. The tissue
contrast of age-matched brains are likely to be similar in structural MR
images, because T1 and T2 relaxations change with age due to the
myelination and water content in the tissues. Using age-matched
atlases in mutli-atlas based segmentation could improve the image
registration (and thus, segmentation) accuracy (Heckemann et al.,
2010) between brains with similar morphometric and photometric
features. Our results suggest that the effect of atlas age-matching is
significant in many structures and is particularly important for
early childhood and elderly brains, where the influences of brain
growth or atrophy are most significant.

Among the structures we measured in our study, the segmentation
accuracy of the cerebral cortex and the caudate are most dependent
on age-matching. It is known that the cortex undergoes active growth
from childhood to adulthood (Gogtay et al., 2004; Shaw et al., 2008),
and that cortical atrophy accelerates with age (Raz et al., 1997; Scahill
et al., 2003). This often manifest as the more pronounced CSF space in
elderly brains. This leads to the necessity of a larger amount of image
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2006), demonstrated a high level of atlas-age dependence for segmenta-
tion accuracy (Aljabar et al., 2009). Themain reason is the presence of the
hypo-intense white matter at the anterior horn of the lateral ventricles,
which exists in almost all elderly populations above 60 to a different ex-
tent (Fig. 8). In the pediatric atlases, the darkening of these white matter
regions is almost non-existent and if these pediatric atlases are applied
to elderly populations, they are often labeled as a part of the caudate
(Fig. 8A). In the opposite situation (elderly atlases used for pediatric
cases), the labels that define the hypo-intense white matter areas invade
a part of the caudate (Fig. 8B). This is an example of age-dependent
anatomical features that would require age-matched atlases for better
segmentation accuracy. The lateral ventricle is another structure, the
shape of which has significant changes over development and aging
(Coffey et al., 1992; Scahill et al., 2003). In the pediatric brain, a significant
portion of the lateral ventricle spaces are closed and cannot be seen on T1
images. Diffeomorphic image registration cannot register structures if
they do not exist, and, thus, it is understandable that the pediatric
atlases could not accurately define the enlarged ventricles in the elderly
populations.

As important as atlas pre-selection, the improvement in segmenta-
tion accuracy also depends on image registration and atlas-fusion strat-
egies. It is important to note, therefore, that the reported effects of the
age-matching could vary depending on the algorithms employed for
the multi-atlas approaches.

Conclusion

We present multi-atlas inventories of 90 atlases, ranging from 4
to 82 years of age for T1-weighted brain MRI segmentation, which
were established with accurate and consistent structural definition
and hierarchical ontology, along with quantification and visualization
tools. This large atlas database can be best used if combined with atlas
pre-selection principles. Dynamic age-matching was shown to be a sim-
ple and efficient pre-selection approach that improved the segmentation
accuracy for several brain structures.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.10.042.
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