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Abstract. We propose a solution to the problem of robust subspace es-
timation using the projection based M-estimator. The new method han-
dles more outliers than inliers, does not require a user defined scale of
the noise affecting the inliers, handles noncentered data and nonorthog-
onal subspaces. Other robust methods like RANSAC, use an input for
the scale, while methods for subspace segmentation, like GPCA, are not
robust. Synthetic data and three real cases of multibody factorization
show the superiority of our method, in spite of user independence.

1 Introduction

The estimation of subspaces is a problem which occurs frequently in computer
vision, e.g., in the analysis of dynamic scenes [5, 8, 14]. Given data lying in a N
dimensional space, linear regression estimates a N − 1 dimensional hyperplane
containing the inliers. If a regression algorithm is adapted to simultaneously
estimate k linearly independent constraints which the inliers in the data satisfy,
the intersection of the hyperplanes represented by these k constraints gives the
required N − k dimensional subspace.

We will generalize the robust projection based M-estimator (pbM) of [3, 13]
to obtain a user independent, robust, multiple subspace estimation algorithm.
As we discuss later, the parameter space is an algebraic structure known as
the Grassmann manifold and we adapt the pbM algorithm to account for the
geometry of this space [6].

If all the data points lie in the same subspace, then Principal Component Anal-
ysis (PCA) could be used to obtain the subspace. Standard PCA is not enough
in practice because the data may contain multiple subspaces and/or outliers.
Methods such as [1, 2] perform robust PCA to handle outliers. There are two
problems with robust PCA algorithms which make them infeasible for multiple
subspace estimation. Firstly, the methods of [1, 2] have breakdown points of 0.5,
and secondly, the algorithms cannot handle structured outliers. These methods
can only be used to estimate a single subspace and an example of this is shown
in Section 4.

A number of multiple subspace estimation techniques have been developed
in the vision community, e.g., subspace separation [5, 10] and generalized PCA

A. Leonardis, H. Bischof, and A. Prinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 301–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



302 R. Subbarao and P. Meer

(GPCA) [17, 16]. Much of the work done in this area was geared towards solving
the problem of motion segmentation.

Most methods make simplifying assumptions about the data. Firstly, in [5, 10]
it is assumed that the subspaces are orthogonal. Therefore, for degenerate mo-
tions where the subspaces share a common basis vector, the methods break down
[20]. Secondly, the methods of [5, 10] require the data to be centered which is
difficult to ensure in practice, especially in the presence of outliers. Finally, [5, 17]
do not account for outliers. Outliers were partially accounted for in [16], but it
is assumed that even in the presence of outliers the algorithm returns a rough
estimate of the true subspaces and the scale of the noise corrupting the inliers
is known. Both these assumptions are often not true in practice.

In this paper we propose a robust, pbM based, subspace estimation method.
It does not suffer from the drawback of previous methods and can be used for
multiple subspace estimation by iteratively estimating the ‘dominant’ subspace,
treating all points not belonging to this subspace as outliers. After removing the
points lying in the estimated subspace, the procedure can be repeated on the
remaining points. We assume the dimension of the subspaces and the number of
motions is known beforehand although the second assumption can be relaxed.
Our method offers several advantages.

– No user input is required for the scale of noise affecting the inliers.
– Handles data sets with more outliers than inliers.
– Handles noncentered data and estimates the centroid of the inliers.
– Does not require orthogonal subspaces for the inliers.

The remainder of the paper is organized as follows. Section 2 gives an in-
troduction to Grassmann manifolds and the conjugate gradient algorithm over
Grassmann manifolds. In Section 3 we discuss robust subspace estimation with
the pbM estimator. In Section 4 we validate our method on synthetic data and
real data by comparing its performance with subspace separation [5, 10], GPCA
[17, 16] and RANSAC [7].

2 Grassmann Manifolds

We discuss a few relevant concepts about Grassmann manifolds in this section.
A more thorough introduction to Grassmann manifolds can be found in [6].

A manifold is a topological space that is locally similar (homeomorphic) to
Euclidean space. The dimension of the Euclidean space to which the manifold
is locally similar to, is also the dimension of the manifold. Every real manifold
can be embedded in a higher dimensional Euclidean space which means that
we can think of the manifold as a smooth surface lying in a higher dimensional
Euclidean space, as illsutrated in Figure 1a.

We are concerned with a particular class of manifolds known as Grassmann
manifolds. A point on the Grassmann manifold, GN,k, represents a k dimensional
subspace of R

N and is numerically represented by an orthonormal basis as a N×k
matrix, i.e., YT Y = Ik×k. Since many different basis span the same subspace,
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Fig. 1. Example of a manifold. (a) A two-dimensional manifold embedded in R
3. The

tangent space at the point Y is also shown. (b) Parallel transporting the vector Δ
along the curve Y(t). The point moves along Ẏ and the component of Δ̇, which does
not lie in the tangent space, is removed.

this representation of points on GN,k is not unique [6]. GN,k is a manifold of
dimension d = Nk − k(k + 1)/2 embedded in R

Nk.
The tangent space TY, at a point Y, is the plane tangent to the surface of the

manifold at that point. An example is shown in Figure 1a. For a d-dimensional
manifold, the tangent space is a d-dimensional vector space. The tangent space
is associated with an inner product gc, such that for any two tangent vectors
Δ1,Δ2 ∈ TY the inner product gc(Δ1,Δ2) lies in R.

For a real function f defined on the manifold, the gradient at Y is defined to
be that unique vector ∇f ∈ TY which satisfies

tr(fT
YΔ) = gc(∇f,Δ) (1)

where, fY is the Jacobian of f at Y and tr is the trace operator. For Grassmann
manifolds the gradient vector is given by

∇f = fY − YYT fY. (2)

Since the tangent space of a manifold varies from point-to-point, if we move
a tangent vector from one point to another point it generally does not lie on the
tangent plane anymore. However, a tangent vector can be moved along paths on
the manifold by taking infinitesimal steps along the curve Y(t), and at each step
removing the component of the vector not in the tangent space. This process is
known as parallel transport. Figure 1b shows a simple case of this idea.

A geodesic is defined to be the curve of shortest length between two point
on the manifold. Parametric formulae can be derived for a geodesics on the
Grassmann manifold, given the starting point and the tangent vector at that
point [6].

Most function optimization techniques, e.g., Newton iterations and conjugate
gradient, apply to functions defined over Euclidean spaces. Based on the theoret-
ical concepts defined above, similar methods have been developed for Grassmann
manifolds [6]. As we show in Section 3, the parameter space we consider is the
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direct product of a Grassmann manifold and a real space, GN,k × R
k. The rest

of this section discusses conjugate gradient function minimization over this pa-
rameter space. The algorithm follows the same general structure as standard
conjugate gradient but has some differences with regard to the movement of
tangent vectors.

We now discuss a conjugate gradient algorithm for the minimization of a
function f from the manifold GN,k × R

k to R. Conjugate gradient minimization
requires the computation of G and g, the gradients of f with respect to Θ and
α. To obtain the gradients at a point (Θ, α), compute the Jacobians JΘ and
Jα of f with respect to Θ and α. The gradients are

G = JΘ − ΘΘT JΘ g = Jα. (3)

Let (Θ0, α0) ∈ GN,k × R
k be the point at which the algorithm is initialized.

Compute the gradients G0 and g0, at (Θ0, α0) and the search directions are
H0 = −G0 and h0 = −g0.

The following iterations are done till convergence. Iteration j+1 now proceeds
by minimizing f along the geodesic defined by the search directions Hj on the
Grassmann manifold and hj in the Euclidean component of the parameter space.
This is known as line minimization. The parametric form of the geodesic is

Θj(t) = ΘjVdiag(cosλt)VT + Udiag(sin λt)VT (4)
αj(t) = αj + thj . (5)

where, t is the parameter, Θj is the estimate from iteration j and Udiag(λ)VT

is the compact SVD of Hj consisting of the k largest singular values and corre-
sponding singular vectors. The sin and cos act element-by-element.

Denoting the value of the parameter t where the minimum is achieved by tmin,
set Θj+1 = Θj(tmin) and αj+1 = αj(tmin). The gradient vectors are parallel
transported to this point by

Hτ
j = [−ΘjVdiag(sin λtmin) + Udiag(cos λtmin)]diag(λ)VT (6)

Gτ
j = Gj − [ΘjVdiag(sin λtmin) + U(I − diag(cosλtmin))]UT Gj (7)

where, τ is the parallel transportation operator. No explicit parallel transport
is required for the Euclidean component of the parameter space since parallel
transport for Euclidean spaces is trivially achieved by moving the whole vector
as it is. The new gradients Gj+1 and gj+1 are computed at (Θj+1, αj+1). The
new search directions are chosen orthogonal to all previous search directions as,

Hk+1 = −Gk+1 + γkHτ
k hk+1 = −gk+1 + γkhk (8)

γk =
tr

(
(Gk+1−Gτ

k)T Gk+1

)
+(g

k+1−g
k
)T g

k+1

tr
(
GT

k Gk

)
+gT

k gk

(9)

where, tr is the trace operator. The algorithm is summarized in Figure 2.
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– Initialize at (Θ0, α0) ∈ GN,k × R
k,

• Compute the gradients G0 and g0 at (Θ0, α0) using (3).
• Set H0 = −G0 and h0 = −g0.

– For j = 0, 1, . . .
• Minimize f(Θj(t), αj(t)) over t where Θj(t) and αj(t) are as in (4) and

(5).
• Set Θj+1 = Θj(tmin) and αj+1 = αj(tmin).
• Compute the gradients Gj+1 and gj+1 at (Θj+1, αj+1) according to (3).
• Parallel transport the vectors Hj and Gj to (Θj+1, αj+1) using (6) and

(7).
• Set the new search directions according to (8) and (9).

Fig. 2. Conjugate gradient algorithm for minimization of f(Θ, α) on GN,k × R
k

3 Robust Subspace Estimation

Robust methods, such as RANSAC and its variations, handle data corrupted
with outliers by making assumptions about the scale of the noise corrupting
the inliers. The pbM estimator [3, 13] is independent of a user supplied scale
parameter and exploit the intrinsic relation between the optimization criteria
and the data space.

3.1 Projection Based M-Estimators

The subspace estimation problem can be stated as follows. Let yio be the true
value of the given data points yi. Given yi, i = 1, . . . , n, the problem of subspace
estimation is to estimate Θ ∈ R

N×k, α ∈ R
k

ΘT yio − α = 0k (10)
yi = yio + δyi δyi ∼ GI(0, σ2IN×N )

where, σ the unknown scale of the noise. Handling non-identity covariances for
heteroscedastic data, is a trivial extension of this problem e.g. [11]. The multi-
plicative ambiguity is resolved by requiring ΘT Θ = Ik×k.

Given a set of k linearly independent constraints, they can be expressed by
an equivalent set of orthonormal constraints. The N × k orthonormal matrix
Θ represents the k constraints satisfied by the inliers. The inliers have N − k
degrees of freedom and lie in a subspace of dimension N − k. Geometrically, Θ
is the basis of the k dimensional null space of the data and is a point on the
Grassmann manifold GN,k. Usually α is taken to be zero since any subspace
must contain the origin. However, for a robust formulation where the data is not
centered, α represents an estimate of the centroid of the inliers. Since we are
trying to estimate both Θ and α, the complete search space for the parameters
is GN,k × R

k. The projection of α onto the column space of Θ is given by
Θα and this product should be independent of the basis used to represent the
subspace.
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The robust M-estimator formulation of the subspace estimation problem is

[
α̂, Θ̂

]
= argmin

α,θ

1

n
∣∣SΘ

∣∣1/2

n∑
i=1

ρ
(
xT

i S−1
Θ xi

)
(11)

where, xi = ΘT yi −α, SΘ is a scale matrix and
∣∣SΘ

∣∣ is its determinant. Note,
that M-scores are usually not normalized by the determinant of the scale matrix.
In our case, the scale matrix varies with the subspace Θ and this normalization
is required [13]. The function ρ(u) considered here is a loss function in u, i.e., it
is nondecreasing with |u|, has a unique minimum at ρ(0) = 0 and a maximum
of one as |u| → 1. The M-estimator problem can be rewritten in terms of the
function κ(u) = 1 − ρ(u) which is referred to as the M-kernel function

[
α̂, Θ̂

]
= arg max

α,Θ

1

n
∣∣SΘ

∣∣1/2

n∑
i=1

κ
(
xT

i S−1
Θ xi

)
. (12)

We use the redescending M-estimator with the biweight loss function [3].
Consider a set of points xi ∈ R

k, i = 1, . . . , n which have been generated by
some unknown probability distribution direction, f(x). Kernel density estima-
tion, also known as the Parzen window method in pattern recognition literature,
returns an estimate of this unknown distribution as1

f̂Θ(x) =
1

n |H|1/2

n∑
i=1

k
(
(xi − x)T H−1 (xi − x)

)
. (13)

where, H is a bandwidth matrix, k(u) is the profile function which decreases
with increasing |u|.

The optimal choice for the bandwidth used is dependent on the true distribu-
tion. For one-dimensional kernel density estimation the following approximate
bandwidth selection formula was derived in [18, Sec.3.2.2]

h = n−1/5 med
j

∣∣∣xj − med
i

xi

∣∣∣ (14)

and we later discuss how we adapt this for data dependent bandwidth matrices.
There exist obvious similarities between (12) and (13). In (13), if we take the

M-kernel function κ(u) as the kernel k(u), the projections ΘT yi as the data
points xi, replace x with α and the bandwidth matrix H with the scale matrix
SΘ , we get (12). The M-estimator problem can be rewritten as

Θ̂ = arg max
Θ

[
max
x

f̂Θ(x)
]

(15)

1 For f̂(x) to be a true density function and satisfy
∫

R
f̂(x)dx = 1 we should use cκ(x)

where c is chosen such that c
∫

R
κ(x)dx = 1. However, this global scaling does not

affect any of the further analysis and is ignored.



Subspace Estimation Using Projection Based M-Estimators 307

where, f̂Θ(x) refers to the estimate defined in (13). The formulation of (15) max-
imizes the value of the kernel density estimate at the mode. The inner maximiza-
tion in (15) returns the intercept as the mode of f̂Θ(x), i.e., α = maxx f̂Θ(x).
The pbM algorithm is based on this similarity between kernel density estimation
and M-estimators.

3.2 The pbM Algorithm

The first part of each pbM iteration consists of probabilistic sampling. An ele-
mental subset which uniquely defines a k-dimensional subspace of R

N is chosen
to get an estimate of Θ.

Given Θ, the data points are projected into R
k and mean shift [4] is used

find the mode of the projections in R
k. The bandwidth matrix is taken to be

diagonal, with the values for each direction independently chosen by (14). This
method depends on the basis used and a rotation of the basis gives a bandwidth
matrix which depends on the rotation in a complex manner. The pbM estimator
exhibits a weak dependence on the exact form of the bandwidth, and this method
is sufficient. Of the modes returned, the mode with highest density is retained
as the intercept α and the density at α is assigned as the score of (Θ, α).

This score is now maximized in a neighborhood of Θ. In spite of the non-
differentiable nature of (15), derivative based methods can be used for this opti-
mization by ignoring the dependence of α and SΘ on Θ. To ensure ΘT Θ = Ik×k

continues to hold, conjugate gradient is adapted to the Grassmann manifold [6].
We include α in the search space and the complete parameter space is actually
GN,k × R

k. The algorithm is given in Figure 2. At the convergence of the min-
imization, the mode is refined again using mean shift initialized at the current
estimate of α̂.

The procedure is repeated for each elemental subset and the (Θ, α) with
the highest score is taken as (Θ̂, α̂). The inlier-outlier dichotomy estimation is
user independent. Denote the i-th column of Θ̂ by θ̂i and consider the one-
dimensional kernel density estimate of the projections along θ̂i. The mode of
this distribution is given by α̂i, the i-th value of α̂. The first strong minima of
this density on either side of the mode are used to define the limits of the inliers.
Points with projections lying in this range for all the k basis vectors are declared
to be inliers. Multiple subspaces are estimated by repeatedly running the above
algorithm and removing the inliers at each stage from the data set.

4 Experimental Results

We compare the performance of our algorithm against various other estimators:
robust PCA [1, 2], subspace separation [10], GPCA [17, 16] and RANSAC [7].
Most previous methods either try to handle multiple subspaces with no outliers
e.g., GPCA, or estimate only one subspace in the presence of outliers e.g., robust
PCA. RANSAC is the only previous method which can be used for estimating
multiple subspaces even in the presence of outliers, but requires a user defined
noise level. The superiority of pbM to RANSAC has also been experimentally
verified before [3].
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4.1 Synthetic Data

The synthetic data consisted of 100 points lying along two randomly chosen
intersecting lines in 3D with 40 points on one line, 30 points on the other and 30
outliers. Zero mean Gaussian noise of increasing variance was added to the data
and 1000 trials were run for each noise level. In each trial we considered four
different estimation techniques, robust PCA, GPCA, RANSAC and the pbM
estimator. The line with 40 points was estimated. Since robust PCA and GPCA
do not account for noncentered data, the inliers are centered. Both RANSAC
and pbM use 500 elemental subsets for estimation. Since the true scale of the
noise corrupting the inliers is known, RANSAC was tuned to the optimal scale
estimate as suggested in [15]. No user defined scale estimate is required for
pbM.

The error between the true subspace Θ and estimated subspace Θ̂ is the
geodesic length along the Grassmann manifold given by

eΘ = dgm(Θ̂, Θ) = ‖ω‖2 (16)

where, ω is the vector of angles between the basis of Θ̂ and Θ. These angles can
be found by taking the SVD of Θ̂

T
Θ = UΣVT . The values along the diagonal

of Σ are the cosines of the angles in ω. The elements of ω can be found by taking
the inverse cosine of each diagonal elemnt of Σ.

Mean Standard Deviation
σ RPCA GPCA RANSAC pbM RPCA GPCA RANSAC pbM

0.25 0.432 0.498 0.012 0.003 0.160 0.293 0.001 0.049
0.50 0.445 0.494 0.015 0.006 0.151 0.300 0.003 0.034
0.75 0.431 0.488 0.017 0.008 0.157 0.295 0.004 0.019
1.00 0.440 0.492 0.020 0.011 0.165 0.309 0.006 0.024
1.25 0.434 0.490 0.020 0.013 0.156 0.299 0.006 0.022
1.50 0.451 0.479 0.020 0.016 0.158 0.319 0.008 0.018
1.75 0.442 0.492 0.020 0.017 0.158 0.335 0.009 0.019
2.00 0.429 0.483 0.021 0.019 0.161 0.343 0.011 0.016

Fig. 3. For the synthetic data the line with 40 points is estimated. Robust PCA and
GPCA break down due to the outliers. RANSAC performs almost as good as pbM but
requires a user defined scale input which has been tuned to the optimal value.

The mean and standard deviation of the error eΘ are shown in Figure 3.
Robust PCA finds the direction which maximizes the variance of the projections
and always estimates a line lying in between the two lines on the same plane,
leading to a large mean error and relatively moderate standard deviation. GPCA
breaks down because of the outliers. Even when applied only to the inliers, GPCA
deteriorates with increasing noise levels. RANSAC is the only algorithm which
is comparable to pbM.
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4.2 Real Data: Multibody Factorization

For real data we consider the factorization problem [14], since it is well studied
and the degeneracies are well understood [19, 20]. Factorization is based on the
fact that if n rigidly moving points are tracked over f affine images, then 2f
image coordinates are obtained which can be used to define feature vectors in
R

2f . These vectors lie in a four-dimensional subspace of R
2f [14]. If the data is

centered then the dimension of the subspace is only three.
We compare pbM to subspace separation [10], GPCA [17, 16] and RANSAC [7].

Our sequences have large displacements between frames leading to more outliers.
They also consist of few frames leading to more degeneracies, for e.g., with three
motions over four frames it is impossible to have independent subspaces since only
8 independent vectors can exist in the space, while at least 9 linearly independent
vectors are required for each motion subspace to have an independent basis.

In subspace separation [10], a similarity measure is defined for pairs of feature
vectors and these are arranged in a n×n symmetric shape interaction matrix. The
clustering is done by making this matrix block diagonal. In our implementation
we use the similarity measure of [20] which is more appropriate for dependent
subspaces. For block diagonalization we use the algorithm of [12]. Since outliers
do not lie in any subspace they may have high interactions with the inliers and
the result is not robust.

An analytic solution to the multiple subspace estimation problem, GPCA, was
presented in [17, 16]. This method is fast and can handle dependencies among
the subspaces, but it is not robust. RANSAC [7] requires a user defined estimate
for the scale of the noise corrupting the inliers. The ground truth was found

(a) (b)

Inliers GPCA SS RANSAC pbM
Motion 1 52 94/35 157/52 61/52 56/51
Motion 2 30 64/14 35/29 32/29

Fig. 4. First Experiment. (a) Segmented inliers returned by pbM for both motions,
plotted on one of the frames. (b) Outliers returned by pbM. The table shows the
results of the different estimators for the complete sequence.
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(a) (b)

Inliers GPCA SS RANSAC pbM
Motion 1 40 72/40 127/40 73/40 46/39
Motion 2 30 42/30 24/23
Motion 3 21 14/0 24/21 23/21

Fig. 5. Second Experiment. (a) Inliers returned by pbM for the three motions in the
sequence. (b) Outliers returned by pbM. The table shows the results of the estimators.

(a) (b)

Inliers GPCA SS RANSAC pbM
Motion 1 45 86/22 124/45 62/45 41/40
Motion 2 17 31/0 17/17
Motion 3 13 8/0 18/13 14/12

Fig. 6. Third Experiment. (a) Inliers returned by pbM for the three motions in the
sequence. (b) Outliers returned by pbM. The table shows the results of the estimators.

through manual inspection. Given the ground truth, we compute the scale of
the inlier noise σ̂, and the RANSAC scale input is optimally set to 1.96σ̂ [15].

We used the point matching algorithm of [9] to track points. For the real data
sets, both RANSAC and pbM used 1000 elemental subsets for estimating the
first subspace, and 500 elemental subsets for estimating each further subspace.
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An algorithm’s performance is measured by its ability to cluster points correctly.
This is measured by the ratio of the points declared as inliers to the number,
among them, which are truly inliers. The closer this is to one the better.

We present our results on three progressively more complicated data sets.
The first sequence consists of two moving bodies tracked over five frames. The
motions subspaces are independent. Of the 158 features tracked, the two motions
contained 52 and 30 points and 76 outliers. The results are shown in Figure 4.
GPCA and subspace separation break down due to the outliers. GPCA randomly
classifies the points into subspaces while subspace separation classifies all but
one points into a single motion. Only on clean data, with no outliers, do GPCA
and subspace separation give good results, but this never occurs in practice. The
performance of RANSAC, when tuned to its optimal scale, is the same as pbM.
A few of the mismatched points lie in the subspaces and are declared inliers.

The second sequence has three moving toys over four frames, with two of
the motions having dependent subspaces. Of the 128 features tracked, the three
motions contain 40, 30 and 21 inliers while 37 points were outliers. The results
are shown in Figure 5. GPCA and subspace separation break down due to the
outliers. In fact, subspace separation also breaks down on the clean data set
due to degeneracies. RANSAC is unable to separate between the two degenerate
motions since it cannot differentiate between outliers and noisy inliers, and clas-
sifies the inliers of both motions as a single motion. Only pbM is able to detect
and segment all three motions.

The third sequence has three independent motions over four frames. The re-
sults are shown in Figure 6. The plate and napkin have the same motion, while
the book and the box move independently. There are a large number of mis-
matches, and the motions subspaces are dependent. Among the 125 feature vec-
tors the three motions contain 45, 17 and 13 inliers and there are 50 outliers.
As before, GPCA and subspace separation break down. RANSAC cannot dis-
tinguish between two of the motions and combines both sets of inliers into one
motion. Only pbM segments all motions correctly.

5 Conclusions

We proposed a robust subspace estimation algorithm based on the pbM estima-
tor. The pbM algorithm required theoretical and computational modifications to
estimate subspaces. For multiple structure estimation, currently, we recursively
estimate the dominant subspace. We are working on methods which can simulta-
neously estimate the number of motions and segment them in a single step.
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