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Abstract

We introduce a maximum Lq-likelihood estimation (MLqE) of mixture models us-

ing our proposed expectation maximization (EM) algorithm, namely the EM algorithm

with Lq-likelihood (EM-Lq). Properties of the MLqE obtained from the proposed EM-

Lq are studied through simulated mixture model data. Compared with the maximum

likelihood estimation (MLE) which is obtained from the EM algorithm, the MLqE pro-

vides a more robust estimation against outliers for small sample sizes. In particular,

we study the performance of the MLqE in the context of the gross error model, where

the true model of interest is a mixture of two normal distributions, and the contam-

ination component is a third normal distribution with a large variance. A numerical

comparison between the MLqE and the MLE for this gross error model is presented in

terms of Kullback Leibler (KL) distance and relative efficiency.
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1 INTRODUCTION

Maximum likelihood is among the most commonly used estimation procedures. For mixture

models, the maximum likelihood estimation (MLE) via the expectation maximization (EM)

algorithm introduced by Dempster et al. (1977) is a standard procedure. Recently, Fer-

rari and Yang (2010) introduced the concept of maximum Lq-likelihood estimation (MLqE),

which can yield robust estimation by trading bias for variance, especially for small or mod-

erate sample sizes. This article combines the MLqE with the EM algorithm to obtain the

robust estimation for mixture models, and studies the performance of this robust estimator.

In this article, we propose a new EM algorithm — namely expectation maximization

algorithm with Lq-likelihood (EM-Lq) which addresses MLqE within the EM framework. In

the EM-Lq algorithm, we propose a new objective function at each M step which plays the

role that the complete log likelihood plays in the traditional EM algorithm. By doing so, we

inherit the robustness of the MLqE and make it available for mixture model estimation.

Our study focuses on the performance of the MLqE for estimation in a gross error model

f ∗0 (x) = (1−ε)f0(x)+εferr(x), where f0(x) is what we are interested in estimating and ferr(x)

is the measurement error component. For simplicity, we consider the object of interest f0(x)

to be a mixture of two normal distributions. And ferr(x) is a third normal distribution with

a large variance. We will examine the properties of the MLqE, in comparison to that of the

MLE, at different levels of the contamination ratio ε.

The measurement error problem is one of the most practical problems in Statistics.

Let us consider that some measurements X = (X1, X2, ..., Xn) are produced by a scientific

experiment. X has a distribution fθ with a interpretable parameter θ that we are interested

in. However, we do not observe X directly. Instead, we observe X∗ = (X∗1 , X
∗
2 , ..., X

∗
n) where

most of the X∗i = Xi, but there are a few outliers. In other words, X∗ is X contaminated

with gross errors which are mostly due to either human error or instrument malfunction.
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But fθ is still the target of our estimation (Bickel and Doksum (2007)). To overcome this

problem and still be able to do statistical inference for fθ in the mixture model case, we

come up with this idea of the EM-Lq.

There has been an extensive amount of early work on robust estimation of mixture

models and clustering. For example, Peel and McLachlan (2000) used t distributions instead

of normal distributions to incorporate the phenomena of fat tails, and gave a corresponding

expectation/conditional maximization (ECM) algorithm which was originally introduced by

Meng and Rubin (1993). McLachlan et al. (2006) further formalized this idea and applied

it to robust cluster analysis. Tadjudin and Landgrebe (2000) made a contribution on robust

estimation of mixture model parameters by using both labeled and unlabeled data, and

assigning different weights to different data points. Garcia-Escudero and Gordaliza (1999)

studied the robustness properties of the generalized k-means algorithm from the influence

function and the breakpoint perspectives. Finally, Cuesta-Albertos et al. (2008) applied

the trimmed subsample of the data for fitting mixture models and iteratively adjusted the

subsample after each estimation.

The remainder of this article is organized as follows. Section 2 gives an introduction

to the MLqE along with its advantages compared to the MLE. Properties of the MLqE for

mixture models are discussed in Section 3. In Section 4, we present our EM-Lq, and explain

the rationale behind it. The application of the EM-Lq in mixture models is introduced and

discussed in Section 5. The comparisons of the MLqE (obtained from the EM-Lq) and the

MLE based on simulation as well as real data are presented in Section 6. We address the

issue of tuning parameter q in Section 7. We conclude with a discussion and directions for

future research in Section 8, and relegate the proofs to Section 9.
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2 MAXIMUM Lq-LIKELIHOOD ESTIMATION

2.1 Definitions and Basic Properties

First, let us start with the traditional maximum likelihood estimation. Suppose data X

follows a distribution with probability density function fθ parameterized by θ ∈ Θ ⊂ Rd.

Given the observed data x = (x1, ..., xn), the maximum likelihood estimate is defined as

θ̂MLE = arg maxθ∈Θ{
∑n

i=1 log f(xi; θ)}. Similarly, the maximum Lq-likelihood estimate (Fer-

rari and Yang 2010) is defined as

θ̂MLqE = arg max
θ∈Θ

n∑
i=1

Lq(f(xi; θ)),

where Lq(u) = (u1−q−1)/(1−q) and q > 0. By L’Hopital’s rule, when q → 1, Lq(u)→ log(u).

The tuning parameter q is called the distortion parameter, which governs how distorted Lq

is away from the log function. Based on this property, we conclude that the MLqE is a

generalization of the MLE.

Define U(x; θ) = ∇θ log f(x; θ) = f ′θ(x; θ)/f(x; θ) and U∗(x; θ, q) = ∇θLq(f(x; θ)) =

U(x; θ)f(x; θ)1−q, we know that θ̂MLE is a solution of the likelihood equation 0 =
∑n

i=1 U(xi; θ).

Similarly, θ̂MLqE is a solution of the Lq-likelihood equation

0 =
n∑
i=1

U∗(xi; θ, q) =
n∑
i=1

U(xi; θ)f(xi; θ)
1−q. (1)

It is easy to see that θ̂MLqE is a solution to a weighted version of the likelihood equation

that θ̂MLE solves. The weights are proportional to the power transformation of the probability

density function, f(xi; θ)
1−q. When q < 1, the MLqE puts more weight on the data points

with high likelihoods, and less weight on the data points with low likelihoods. The tuning

parameter q adjusts how aggressively the MLqE distorts the weight allocation. The MLE
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can be considered as a special case of the MLqE with equal weights.

In particular, when f is a normal distribution, our µ̂MLqE and σ̂2
MLqE satisfy

µ̂MLqE =
1∑n
i=1wi

n∑
i=1

wixi, (2)

σ̂2
MLqE =

1∑n
i=1wi

n∑
i=1

wi(xi − µ̂MLqE)2, (3)

where wi = ϕ(xi; µ̂MLqE, σ̂2
MLqE)1−q and ϕ is a normal probability density function.

From equations (2) and (3), we conclude that the MLqE of the mean and the variance

of a normal distribution are just the weighted mean and weighted variance. When q < 1,

the MLqE gives smaller weights for data points lying in the tail of the normal distribution,

and puts more weights on data points near the center. By doing so, the MLqE becomes

less sensitive to outliers than the MLE at the cost of introducing bias into the estimation.

A simple and fast re-weighting algorithm is available for solving (2) and (3). Details of the

algorithm are described in Section 9.

2.2 Consistency and Bias-Variance Trade Off

Before discussing the consistency of the MLqE, let us look at the MLE first. It is well studied

that the MLE is quite generally a consistent estimator. Suppose the true distribution f0 ∈ F ,

where F is a family of distributions; we know that f0 = arg maxg∈F Ef0 log g(X), which shows

the consistency of the MLE. However, when we replace the log function with the Lq function,

we do not have the same property.

We first define f (r), a transformed distribution of f called the escort distribution, as

f (r) =
f(x; θ)r∫
f(x; θ)rdx

. (4)

We also define F to be a family of distributions that is closed under such a transformation
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(i.e., ∀f ∈ F , f (r) ∈ F). Equipped with these definitions, we have the following property:

f
(1/q)
0 = arg max

g∈F
Ef0Lq(g(X)).

Thus we see that the maximizer of the expectation of Lq-likelihood is the escort distribution

(r = 1/q) of the true density f0. In order to also achieve consistency for the MLqE, Ferrari

and Yang (2010) let q tend to 1 as n approaches infinity.

For a parametric distribution family G = {f(x; θ) : θ ∈ Θ}, suppose it is closed under the

escort transformation (i.e., ∀θ ∈ Θ, ∃θ′ ∈ Θ, s.t. f(x; θ′) = f(x; θ)(1/q)). We have a similar

property, θ̃ = arg maxθ∈ΘEθ0Lq(f(X; θ)), where θ̃ satisfies f(x; θ̃) = f(x; θ0)(1/q)

We now understand that, when maximizing the Lq-likelihood, we are essentially find-

ing the escort distribution of the true density, not the true density itself, so our MLqE is

asymptotically biased. However, this bias can be compensated by variance reduction if the

distortion parameter q is properly selected. Take the MLqE for the normal distribution for

example. With an appropriate q < 1, the MLqE will partially ignore the data points on

the tails while focusing more on fitting data points around the center. The MLqE obtained

this way is possibly biased (especially for the scale parameter), but will be less volatile to

a significant change of data on the tails, hence, a good example of bias-variance trade off.

q can be considered as a tuning parameter that adjusts the magnitude of the bias-variance

trade off.

2.3 Confidence Intervals

There are generally two ways to construct confidence intervals for the MLqE. One is para-

metric, the other is nonparametric. In this section, we discuss the univariate case. The

multivariate case can be extended naturally.

For the parametric way, we know that the MLqE is an M-estimator, whose asymptotic
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variance is available. In order to have the asymptotic variance be valid, we need the sample

size to be reasonably large so that the Central Limit Theorem works. However, in our

application, the MLqE deals with small or moderate sample sizes in most cases. So the

parametric way is not ideal, but it does provide a guideline to evaluate the estimator.

The second way is the nonparametric bootstrap method. We create bootstrap samples

from the original sample, calculate their MLqEs for all bootstrap samples. We further

calculate the lower and upper quantiles of these MLqEs, and call these quantiles the lower

and upper bounds of the confidence interval. This method is model agnostic, and works well

with the MLqE.

3 MLqE OF MIXTURE MODELS

We now look at the problem of estimating mixture models. A mixture model is defined as

f(x) =
∑k

j=1 πjfj(x; θj). Unlike the exponential family which is proved to be closed under

the escort transformation (equation (4)), the mixture model family is not closed under such

a transformation. For example, consider a mixture model with the complexity k = 2. The

escort transformation with 1/q = 2 of this distribution is f(x)(1/q) ∝ (π1ϕ1(x) +π2ϕ2(x))2 =

π2
1ϕ1(x)2 + π2

2ϕ2(x)2 + 2π1π2ϕ1(x)ϕ2(x), which is a mixture model with three components.

More generally, suppose f0 ∈ F , where F is a mixture model family with complexity k.

Since f
(1/q)
0 /∈ F , we know that

f
(1/q)
0 6= g̃ := arg max

g∈F
Ef0Lq(g(X)),

where g̃ can be considered as the projection of f
(1/q)
0 onto F . Again, the MLqE of mixture

models brings more bias to the estimate. This time, the new bias is a model bias as opposed

to the estimation bias which we have discussed in the previous section. When estimating
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mixture models using the MLqE, we carry two types of bias: estimation bias and model bias.

The distortion parameter q now adjusts both of them. This idea is illustrated in Figure 1a.

There is a simple way to partially correct the bias. Since we know that the MLqE is

unbiased for the escort distribution of the true distribution. After we obtain the MLqE from

data, f̂MLqE, we can blow it up by a power transformation g = f̂ qMLqE/
∫
f̂ qMLqEdx to get

a less biased estimate. However, this only partially corrects the bias since the projection

from the escort distribution onto the mixture model family cannot be recovered by this

transformation.

(a) (b)

(c)

Figure 1: Illustration of the MLqE of mixture models: a) shows the usual case, which is
the MLqE of mixture models with correctly specified models, b) shows the MLqE of non-
measurement error components f0 within the gross error model f ∗0 using the misspecified
model, c) shows the MLqE of non-measurement error components f0 within the gross error
model f ∗0 using the correctly specified model.

Because the MLqE has the desirable property of being robust against outliers, we in-

troduce the gross error model to evaluate the MLqE’s performance. A gross error model is

defined as f ∗0 (x) = (1 − ε)f0(x) + εferr(x), where f0 is a mixture model with complexity k,
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ferr can be considered as a measurement error component, and ε is the contamination ratio.

Hence, f ∗0 is also a mixture model with complexity k + 1. The gross error density f ∗0 can be

considered as a small deviation from the target density f0. In order to build an estimator

for f0 that is robust against ferr, we apply the MLqE. Generally, there are two ways to apply

the MLqE in this situation.

First, we can directly use a mixture model with complexity k to estimate f0 based on

data from f ∗0 . We call this approach the direct approach. This time the model is more

complex than before. The idea is illustrated in Figure 1b. Suppose F is a mixture model

family with complexity k, and f0 ∈ F , f ∗0 /∈ F , f
∗(1/q)
0 /∈ F . We obtain the MLqE of f0(x),

g̃, by

f
∗(1/q)
0 6= g̃ := arg max

g∈F
Ef∗0Lq(g(X)).

Here we use the estimation bias and the model bias to offset the measurement error effect on

f0. Please note that this approach is essentially an estimation under the misspecified model.

The second approach is that we use a mixture model with complexity k+1 to estimate f ∗0

and project the estimate to the k component mixture model family by removing the largest

variance component (i.e., the measurement error component) and normalizing the weights.

We call this approach the indirect approach. The projected model is our estimate for f0.

In this case, we essentially treat the parameters of the measurement error component as

nuisance parameters. This idea is illustrated in Figure 1c. In Figure 1c, g̃ is our estimate of

f ∗0 . And g̃0, the projection of g̃ onto F0, is our estimate of f0. This approach is an estimation

conducted under the correctly specified model. Although the model is correctly specified,

we may have higher estimation variance as we estimate more parameters.

In this article, we will study the MLqE using the above two approaches.
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4 EM ALGORITHM WITH Lq-LIKELIHOOD

We now propose a variation of the EM algorithm — the expectation maximization algorithm

with Lq-likelihood (EM-Lq), which gives the local maximum Lq-likelihood. Before introduc-

ing our EM-Lq, let us briefly review the rationale of the EM. Throughout this article, we

use X, Z, Z for random variables and vectors, and x, z, z for realizations.

4.1 Why Does the EM Algorithm Work

The EM algorithm is an iterative method for finding a local maximum likelihood by making

use of observed data X and missing data Z. The rationale behind the EM is that

n∑
i=1

log p(xi; Ψ) =
n∑
i=1

EΨold [log p(X,Z; Ψ)|X = xi]︸ ︷︷ ︸
J(Ψ,Ψold)

−
n∑
i=1

EΨold [log p(Z|X; Ψ)|X = xi]︸ ︷︷ ︸
K(Ψ,Ψold)

,

where J(Ψ,Ψold) is the expected complete log likelihood, and K(Ψ,Ψold) takes its minimum

at Ψ = Ψold and ∂
∂Ψ
K(Ψ,Ψold)

∣∣
Ψ=Ψold = 0. Standing at the current estimate Ψold, to climb

uphill on
∑n

i=1 log p(xi; Ψ) only requires us to climb J , and K will automatically increase.

Meanwhile, the incomplete log likelihood and the expected complete log likelihood share the

same derivative at Ψ = Ψold, i.e.,

∂

∂Ψ

n∑
i=1

log p(xi; Ψ)
∣∣∣
Ψ=Ψold

=
∂

∂Ψ
J(Ψ,Ψold)

∣∣∣
Ψ=Ψold

. (5)

This is also known as the minorization-maximization algorithm (MM). A detailed explana-

tion of the algorithm can be found in Lange et al. (2000). Our algorithm presented in the next

section is essentially built on Lange et al. (2000) with variation made for the Lq-likelihood.
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4.2 EM Algorithm with Lq-Likelihood

Having the idea of the traditional EM in mind, let us maximize the Lq-likelihood
∑n

i=1 Lq(p(xi; Ψ))

in a similar fashion. For any two random variables X and Z, we have

Lq(p(X; Ψ)) = Lq

(p(X,Z; Ψ)

p(Z|X; Ψ)

)
=
Lq(p(X,Z; Ψ))− Lq(p(Z|X; Ψ))

p(Z|X; Ψ)1−q ,

where we have used Lq(a/b) = [Lq(a) − Lq(b)]/b
1−q (Lemma 1, part (iii) in Section 9).

Applying the above equation on data x1, ..., xn, and taking expectation (under Ψold) given

observed data x1, ..., xn, we have

n∑
i=1

EΨold

[
Lq(p(X; Ψ))

∣∣∣X = xi

]
=

n∑
i=1

EΨold

[Lq(p(X,Z; Ψ))− Lq(p(Z|X; Ψ))

p(Z|X; Ψ)1−q

∣∣∣X = xi

]
,

n∑
i=1

Lq(p(xi; Ψ)) =
n∑
i=1

EΨold

[(p(Z|X; Ψold)

p(Z|X; Ψ)

)1−q( Lq(p(X,Z; Ψ))

p(Z|X; Ψold)1−q −
Lq(p(Z|X; Ψ))

p(Z|X; Ψold)1−q

)∣∣∣X = xi

]
,

where we multiply and divide P (Z|X,Ψold)1−q in the numerator and the denominator.

Define

A(Ψ,Ψold) =
n∑
i=1

EΨold

[ Lq(p(X,Z; Ψ))

p(Z|X; Ψold)1−q −
Lq(p(Z|X; Ψ))

p(Z|X; Ψold)1−q

∣∣∣X = xi

]
,

B(Ψ,Ψold) =
n∑
i=1

EΨold

[ Lq(p(X,Z; Ψ))

p(Z|X; Ψold)1−q

∣∣∣X = xi

]
,

C(Ψ,Ψold) = −
n∑
i=1

EΨold

[ Lq(p(Z|X; Ψ))

p(Z|X; Ψold)1−q

∣∣∣X = xi

]
,

⇒ A(Ψ,Ψold) = B(Ψ,Ψold) + C(Ψ,Ψold). (6)

Based on the definitions above, we have the following theorems.

Theorem 1. C(Ψ,Ψold) takes its minimum at Ψ = Ψold. i.e., C(Ψold,Ψold) = minΨC(Ψ,Ψold).
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Proof.

C(Ψold,Ψold)− C(Ψ,Ψold) =
n∑
i=1

EΨold

[
Lq

( p(Z|X; Ψ)

p(Z|X; Ψold)

)∣∣∣X = xi

]
≤

n∑
i=1

EΨold

[ p(Z|X; Ψ)

p(Z|X; Ψold)
− 1
∣∣∣X = xi

]
=

n∑
i=1

∑
z

( p(z|xi; Ψ)

p(z|xi; Ψold)
− 1
)
p(z|xi; Ψold) = 0,

where the inequality comes from the fact that Lq(u) ≤ u− 1 (Lemma 1, part (iv) in Section

9). The above inequality becomes equality only when Ψ = Ψold.

Theorem 2. When A, B and C are differentiable with respect to Ψ, we have

∂

∂Ψ
C(Ψ,Ψold)

∣∣∣
Ψ=Ψold

= 0,

∂

∂Ψ
A(Ψ,Ψold)

∣∣∣
Ψ=Ψold

=
∂

∂Ψ
B(Ψ,Ψold)

∣∣∣
Ψ=Ψold

. (7)

Proof. The first part is a direct result from Theorem 1. By equation (6) and the first part

of the theorem, we have the second part.

Comparing equation (7) with equation (5), we can think of B as a proxy of the complete

Lq-likelihood (i.e., J), A as a proxy of the incomplete Lq-likelihood, and C as a proxy of K.

We know that A is only an approximation of
∑n

i=1 Lq(p(xi; Ψ)) due to the factor of

(p(Z|X; Ψold)/p(Z|X; Ψ))1−q. However, at Ψ = Ψold, we do have

A(Ψ,Ψold)
∣∣
Ψ=Ψold =

n∑
i=1

Lq(p(xi; Ψ))
∣∣
Ψ=Ψold . (8)

A will be a good approximation of
∑n

i=1 Lq(p(xi; Ψ)) because that (1) within a small

neighborhood Nr(Ψ
old) = {Ψ : d(Ψ,Ψold) < r}, p(Z|X; Ψold)/p(Z|X; Ψ) is approximately

1; (2) due to the transformation y = x1−q, (p(Z|X; Ψold)/p(Z|X; Ψ))1−q gets to be pushed
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toward 1 even further when q is close to 1; and (3) even if (p(Z|X; Ψold)/p(Z|X; Ψ))1−q is

far from 1, because we sum over all the xi’s, we still average out these poorly approximated

data points.

Given that C achieves minimum at Ψold, starting at Ψold and maximizing A requires

only maximizing B. In order to take advantage of this property, we use A to approximate∑n
i=1 Lq(p(xi; Ψ)) at each iteration, and then maximize B to maximize A, and eventually to

maximize
∑n

i=1 Lq(p(xi; Ψ)). B is usually easy to maximize. Based on this idea, we build

our EM-Lq as follows:

• 1. E step: Given Ψold, calculate B.

• 2. M step: Maximize B and obtain Ψnew = arg maxΨB(Ψ,Ψold).

• 3. If Ψnew converges, we terminate the algorithm. Otherwise, we set Ψold = Ψnew, and

return to step 1.

4.3 Monotonicity and Convergence

In this section, we will discuss the monotonicity and the convergence of the EM-Lq. We

start with the following theorem.

Theorem 3. For any Ψ, we have the lower bound of the Lq-likelihood function

n∑
i=1

Lq(p(xi; Ψ)) ≥ B(Ψ,Ψold) + C(Ψold,Ψold). (9)

When Ψ = Ψold, we have

n∑
i=1

Lq(p(xi; Ψold)) = B(Ψold,Ψold) + C(Ψold,Ψold).

Proof. See Section 9 for proof.
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From Theorem 3, we know that, at each M step, as long as we can find Ψnew that

increases B, i.e., B(Ψnew,Ψold) > B(Ψold,Ψold), we can guarantee that the Lq-likelihood will

also increase, i.e.,
∑n

i=1 Lq(xi; Ψnew) >
∑n

i=1 Lq(xi; Ψold). It is because that

n∑
i=1

Lq(p(xi; Ψnew)) ≥ B(Ψnew,Ψold) + C(Ψold,Ψold)

> B(Ψold,Ψold) + C(Ψold,Ψold)

=
n∑
i=1

Lq(p(xi; Ψold)).

Thus, we have proved the monotonicity of our EM-Lq algorithm.

Based on Theorem 3, we can further derive the following theorem.

Theorem 4. For our EM-Lq algorithm, when A, B and the Lq-likelihood are differentiable

with respect to Ψ, it holds that

∂

∂Ψ

n∑
i=1

Lq(p(xi; Ψ))
∣∣∣
Ψ=Ψold

=
∂

∂Ψ
B(Ψ,Ψold)

∣∣∣
Ψ=Ψold

=
∂

∂Ψ
A(Ψ,Ψold)

∣∣∣
Ψ=Ψold

,

n∑
i=1

Lq(P (xi; Ψ))
∣∣∣
Ψ=Ψold

= A(Ψ,Ψold)
∣∣∣
Ψ=Ψold

.

Proof. See Section 9 for proof.

It becomes clear that A is not only just a good approximation of, but also the first order

approximation of,
∑n

i=1 Lq(p(xi; Ψ)).

One good thing following from the property of the first order approximation is that,

when we have a fixed point, meaning that A(Ψold,Ψold) = maxΨA(Ψ,Ψold), then we know

∂
∂Ψ
A(Ψ,Ψold)

∣∣∣
Ψ=Ψold

= ∂
∂Ψ

∑n
i=1 Lq(p(xi; Ψ))

∣∣∣
Ψ=Ψold

= 0, which means that
∑n

i=1 Lq(p(xi; Ψ))

takes its local maximum at the same place that A(Ψ,Ψ) does. So as long as we achieve the

maximum of A, we simultaneously maximize the incomplete Lq-likelihood
∑n

i=1 Lq(p(xi; Ψ)).

14



By Theorem 4, we know that, as long as ∂
∂Ψ
B(Ψ,Ψold)

∣∣∣
Ψ=Ψold

6= 0, we can always find a

Ψnew, such that
∑n

i=1 Lq(p(xi; Ψnew)) >
∑n

i=1 Lq(p(xi; Ψold)). Hence our EM-Lq can be con-

sidered as a generalized EM algorithm (GEM) for Lq-likelihood. Wu (1983) has proved the

convergence of the GEM from a pure optimization approach (Global Convergence Theorem,

Theorem 1 and Theorem 2 of Wu, 1983, pp. 97 - 98), which we can directly use to prove the

convergence of the EM-Lq.

In our simulation results, the converging point of the EM-Lq is always the same as the true

maximizer of the Lq-likelihood which is obtained from the optimization package fmincon()

in Matlab. We also try to move a small step away from the solution given by the EM-Lq to

check whether the Lq-likelihood decreases. It shows that a small step in any directions will

cause the Lq-likelihood to decrease, which numerically demonstrates that the solution is a

local maximizer.

5 EM-Lq ALGORITHM FOR MIXTURE MODELS

5.1 EM-Lq for Mixture Models

Returning to our mixture model, suppose the observed data x1, ..., xn are generated from a

mixture model f(x; Ψ) =
∑k

j=1 πjfj(x; θj) with parameter Ψ = (π1, . . . , πk−1, θ1, . . . , θk). The

missing data are the component labels [z1, ..., zn], where zi = (zi1, ..., zik) is a k dimensional

component label vector with each element zij being 0 or 1 and
∑k

j=1 zij = 1.

In this situation, we have

p(x, z; Ψ) =
k∏
j=1

(πjfj(x; θj))
zj , (10)

p(z|x; Ψ) =
k∏
j=1

p(zj|x; Ψ)zj =
k∏
j=1

(πjfj(x; θj)

f(x; Ψ)

)zj
, (11)
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where x is an observed data point, and z = (z1, ..., zk) is a component label vector. Substi-

tuting these into B and reorganizing the formula, we have

Theorem 5. In the mixture model case, B can be expressed as

B(Ψ,Ψold) =
n∑
i=1

k∑
j=1

τj(xi,Ψ
old)qLq(πjfj(xi; θj)),

where τj(xi,Ψ
old) = EΨold [Zij|X = xi], i.e., the soft label in the traditional EM.

Proof. See Section 9 for proof.

We define new binary random variables Z̃ij whose expectation is τ̃j(xi,Ψ
old) = EΨold [Z̃ij|X =

xi] = EΨold [Zij|X = xi]
q. Z̃ij can be considered as a distorted label as its probability distri-

bution is distorted (i.e., PΨold(Z̃ij = 1|xi) = PΨold(Zij = 1|xi)q). Please note that, for Z̃ij, we

no longer have
∑k

j=1 τ̃j(xi,Ψ
old) = 1. After the replacement, B becomes

B(Ψ,Ψold) =
n∑
i=1

k∑
j=1

τ̃j(xi,Ψ
old)Lq(πjfj(xi; θj)).

To maximize B, we apply the first order condition and obtain the following theorem.

Theorem 6. The first order condition of B with respect to θj and πj yields

0 =
∂

∂θj
B(Ψ,Ψold)⇒ 0 =

n∑
i=1

τ̃j(xi,Ψ
old)

∂
∂θj
fj(xi; θj)

fj(xi; θj)
fj(xi; θj)

1−q, (12)

0 =
∂

∂πj
B(Ψ,Ψold)⇒ πj ∝

[ n∑
i=1

τ̃j(xi,Ψ
old)fj(xi; θj)

1−q
] 1

q
. (13)

Proof. See Section 9 for proof.
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Recall that the M step in the traditional EM solves a similar set of equations,

0 =
∂

∂θj
J(Ψ,Ψold)⇒ 0 =

n∑
i=1

τj(xi,Ψ
old)

∂
∂θj
fj(xi; θj)

fj(xi; θj)
, (14)

0 =
∂

∂πj
J(Ψ,Ψold)⇒ πj ∝

n∑
i=1

τj(xi,Ψ
old). (15)

Comparing equations (14) and (15) with equations (12) and (13), we see that (1) θnew
j of

the EM-Lq satisfies a weighted likelihood equation, where the weights contain both the

distorted soft label τ̃j(xi,Ψ
old) and the power transformation of the individual component

density function, fj(xi; θj)
1−q; and (2) πj is proportional to the summation of the distorted

soft label τ̃j(xi,Ψ
old) adjusted by the individual density function.

5.2 EM-Lq for Gaussian Mixture Models

For a Gaussian mixture model with parameter Ψ = (π1, . . . , πk−1, µ1, . . . , µk, σ
2
1, . . . , σ

2
k).

At each E step, we calculate τ̃j(xi,Ψ
old) =

[
πold
j ϕ(xi;µ

old
j ,σ2old

j )

f(xi,Ψold)

]q
. At each M step, we solve

equations (12) and (13) to yield

µnew
j =

1∑n
i=1 w̃ij

n∑
i=1

w̃ijxi, (16)

σ2
j

new
=

1∑n
i=1 w̃ij

n∑
i=1

w̃ij(xi − µnew
j )2, (17)

πnew
j ∝

[ n∑
i=1

τ̃j(xi,Ψ
old)ϕ(xi;µ

new
j , σ2

j
new

)1−q
] 1

q
,

where w̃ij = τ̃j(xi,Ψ
old)ϕ(xi;µ

new
j , σ2

j
new

)1−q. The same iterative re-weighting algorithm de-

signed for solving equations (2) and (3) can be used to solve equations (16) and (17). Details

of the algorithm is shown in Section 9.

At each M step, it is feasible to replace w̃ij with w̃∗ij = τ̃j(xi,Ψ
old)ϕ(xi;µ

old
j , σ2

j
old

)1−q,
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which only depends on the Ψold, to improve the efficiency of the algorithm. Thus we can

avoid the re-weighting algorithm at each M step. This replacement will simplify the EM-Lq

algorithm significantly. We have done the simulation to show that this modified version of

the algorithm also gives same solutions as the original EM-Lq algorithm.

5.3 Convergence Speed

We have compared the convergence speeds of the EM-Lq and the EM algorithm using a

Gaussian Mixture Model with complexity of 2 (2GMM), f(x) = 0.4ϕ(x; 1, 2) + 0.6ϕ(x; 5, 2),

whose two components are in-separable because of the overlap. Surprisingly, the convergence

of the EM-Lq is on average slightly faster than that of the EM.

The comparison of the convergence speed is based on r, which is defined as

r =
‖Ψ(k) −Ψ(k−1)‖
‖Ψ(k−1) −Ψ(k−2)‖

,

where k is the last iteration of the EM-Lq or the EM algorithm. The smaller r is, the faster

the convergence is.

We simulate 1000 data sets according to the 2GMM, use the EM-Lq (q = 0.8) and

the EM to fit the data, and record the convergence speed difference rMLqE − rMLE. The

average convergence speed difference is -0.012 with a standard error of 0.002, which means

the negative difference in the convergence speed is statistically significant.

However, if we change the 2GMM to a gross error model of 3GMM: f(x) = 0.4(1 −

ε)ϕ(x; 1, 2) + 0.6(1 − ε)ϕ(x; 5, 2) + εϕ(x; 3, 40), where the third component is an outlier

component, and still use a 2GMM to fit, the comparison of the convergence speed becomes

unclear. We have not fully understood the properties of the convergence speed for the EM-Lq

yet. However, we do believe the convergence speed is important, and is an interesting topic

for future research.
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The fact that the convergence of the EM-Lq is a little faster than that of the EM is closely

related to the concept of the information ratio mentioned in Redner and Walker (1984)

and Windham and Cutler (1992), where the convergence speed is connected to the missing

information ratio. In Lq-likelihood, since the two in-separable components are pushed apart

by the weights w̃ij, the corresponding concept of the missing information ratio for the Lq-

likelihood is relatively lower, thus, we have a faster convergence.

Although the convergence speed is faster for the EM-Lq, it is not necessary that the EM-

Lq takes less computer time than the EM. This is because that, at each M step in the EM-Lq,

we need to do another iterative algorithm to obtain Ψnew (i.e., the algorithm explained in

Section 9), whereas the EM needs only one step to obtain the new parameter estimate.

The advantage of the convergence speed of the EM-Lq has been hinted by another algo-

rithm called q-Parameterized Deterministic Annealing EM algorithm (q-DAEM) previously

proposed by Guo and Cui (2008) in the signal processing and statistical mechanics context.

The q-DAEM can successfully maximize the log-likelihood at a faster convergence speed,

by using a different but similar M steps as in our EM-Lq. Their M step includes setting

q > 1 and β > 1 and dynamically pushing q → 1 and β → 1 (β is an additional parameter

for their deterministic annealing procedure). On the other hand, our EM-Lq maximizes the

Lq-likelihood with a fixed q < 1. Although the objective functions are different for these two

algorithms, it is obvious that the advantages on the convergence speed are due to the tuning

parameter q. It turns out that q > 1( along with β > 1 in the q-DAEM) and q < 1 (in the

EM-Lq) both help with the convergence speed, even though they have different convergence

points. We have proved the first order approximation property in Theorem 4, which leads to

the proof of the monotonicity and the convergence for the EM-Lq. For the q-DAEM, because

q ↓ 1 and β ↓ 1 make it reduce to the traditional EM, it also converges. When β = 1 and

q = 1, both algorithms reduce to the traditional EM algorithm.
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6 NUMERICAL RESULTS AND VALIDATION

Now we compare the performance of two estimators on mixture models: 1) the MLqE from

the EM-Lq; 2) the MLE from the EM. We set q = 0.95 throughout this section.

6.1 Kullback Leibler Distance Comparison

We simulate data using a three component Gaussian mixture model (3GMM)

f ∗0 (x; ε, σ2
c ) = 0.4(1− ε)ϕ(x; 1, 2) + 0.6(1− ε)ϕ(x; 5, 2) + εϕ(x; 3, σ2

c ). (18)

This is a gross error model, where the third term is the outlier component (or con-

tamination component, or measurement error component); ε is the contamination ratio

(ε ≤ 0.1); σ2
c is the variance of the contamination component, and is usually very large

(i.e., σ2
c > 10). Equation (18) can be considered as a small deviation from the 2GMM:

f0(x) = 0.4ϕ(x; 1, 2) + 0.6ϕ(x; 5, 2).

As we mentioned in Section 3, there are two approaches for estimating f0 based on data

generated by f ∗0 . We will investigate them individually.

6.1.1 Direct Approach

We start with the direct approach. First, we simulate data with sample size n = 200

according to equation (18), f ∗0 (x; ε, σ2
c = 20), at different contamination levels ε ∈ [0, 0.1].

We fit the 2GMM using the MLqE and the MLE. We repeat this procedure 10,000 times and

then calculate (1) the average KL distance between the estimated 2GMM and f ∗0 , and (2)

the average KL distance between the estimated 2GMM and f0. We summarize the results

in Figure 2 (KL against f ∗0 ) and Figure 3 (KL against f0).

In Figure 2a, we see that both KLMLqE and KLMLE increase as ε increases, which means

the performance of both MLqE and MLE degrades as more measurement errors are present.
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Figure 2: Comparison between the MLqE and the MLE in terms of KL distances against f ∗0 :
(a) shows the KL distances themselves, (b) shows their difference.
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Figure 3: Comparison between the MLqE and the MLE in terms of KL distances against f0:
(a) shows the KL distances themselves, (b) shows their difference.
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KLMLqE is always larger than and increases slightly faster than KLMLE. It implies that

the MLqE performs worse than, and degrades faster than the MLE. Figure 2b shows their

difference KLMLE−KLMLqE which is negative and decreasing. This phenomena is reasonable

because, when estimating f ∗0 using data generated by f ∗0 , the MLE is the best estimator

(in terms of KL distance) by definition. The MLqE’s bias-variance trade off does not gain

anything compared to the MLE.

On the other hand, Figure 3 shows an interesting phenomena. In Figure 3a, we see that

both KLMLqE and KLMLE still increase as ε increases. However, when estimating the non-

measurement error components f0, KLMLqE increases more slowly than KLMLE. The former

starts above the latter but eventually ends up below the latter as ε increases, which means the

MLE degrades faster than the MLqE. Figure 3b shows their difference KLMLE−KLMLqE which

starts in negative and increases gradually to positive (changes sign at around ε = 0.025).

This means that our MLqE performs better than the MLE in terms of estimating f0 when

there are more measurement errors in the data. Hence, we gain robustness from the MLqE.

The above simulation is done using the model f ∗0 (x; ε, σ2
c = 20). To illustrate the effect of

σ2
c on the performance of the MLqE, we change model to f ∗0 (x; ε, σ2

c = 10) and f ∗0 (x; ε, σ2
c =

30), and repeat the above calculation. The results are shown in Figures 4 and 5.

As we can see, σ2
c has a big impact on the performance of the estimator. As σ2

c gets

larger (i.e., more serious measurement error problems), both the MLqE and the MLE degrade

faster as the contamination ratio increases. This is why the slopes of the KL distance curves

become steeper with the higher σ2
c . However, the advantage of the MLqE over the MLE is

more obvious with the larger σ2
c . The point where two KL distance curves insect (in Figure

4b and 5b) moves to the left as σ2
c increases, which means the MLqE will beat the MLE at

the lower contamination ratio when the higher σ2
c is used (i.e., the higher variance of the

measurement errors).
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Figure 4: Comparison between the MLqE and the MLE in terms of KL distances against f ∗0
(left panel) and f0 (right panel) with the third component variance σ2

c being 10.
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Figure 5: Comparison between the MLqE and the MLE in terms of KL distances against f ∗0
(left panel) and f0 (right panel) with the third component variance σ2

c being 30.
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Figure 6: Comparison between the MLqE and the MLE in terms of KL distances against
f0: (a) shows KL distances obtained from the indirect approach, (b) shows KL distances
obtained from the direct approach, (c) shows both these two kinds of KL distances together
in order to compare their magnitude.

6.1.2 Indirect Approach

Now, let us take the indirect approach, which is to estimate f ∗0 first and project it onto the

2GMM space. In this experiment, we let the data to be generated by f ∗0 (x; ε, σ2
c = 40) which

has an even higher variance of the measurement error component than the previous section.

We use a sample size of n = 200. We simulate data according to f ∗0 (x; ε, σ2
c = 40), use the

MLqE and the MLE to fit the 3GMM, take out its component with the largest variance and

normalize the weights to get our estimate for f0. We repeat this procedure 10,000 times, and

calculate the average KL distance between our estimates (both the MLqE and the MLE)

and f0. For the comparison purpose, we repeat the calculation using the direct approach on

this simulation data as well, and summarize the results in Figure 6.

In Figure 6a, we see that, as ε increases, KL distances of the indirect approach first

increase and then decrease. The increasing part suggests that a few outliers will hurt the

estimation of the non-measurement error component. The decreasing part means that, after

the contamination increases beyond certain level (ε = 0.5%), the more contamination there
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is, the more accurate our estimates are. This is because that, when the contamination ratio is

small, it is hard to estimate the measurement error component as there are very few outliers.

As the contamination ratio gets larger, the indirect approach can more accurately estimate

the measurement error component, hence provide better estimates of the non-measurement

error components. Please note that our MLqE is still doing better than the MLE in this

case. The reason is that the MLqE successfully trades bias for variance to gain in the overall

performance. However, as ε increases, the advantage of the MLqE gradually disappears. It

is because that when the contamination is obvious, the MLE will be more powerful and

efficient than the MLqE under the correctly specified model.

In Figure 6b, we present the results for the direct approach, which is consistent with

Figure 3a. We notice that, when f ∗0 has a larger variance for the measure error component,

the MLqE beats the MLE at a lower contamination ratio (ε = 0.003). In other words, as f ∗0

is further deviated from f0 (in terms of the variance of measurement error component), the

advantage of the MLqE becomes more significant.

In Figure 6c, we plot KL distances of both approaches. It is obvious that the indirect

approach is not even comparable to the direct approach until ε raises above 0.08. It is

because that we estimate more parameters and have more estimation variance for the indirect

approach. Although our model is correctly specified, the estimation variance is so big that it

dominates the overall performance. To sum up, with the small contamination ratio, we would

be better off using the direct approach with the misspecified model. When the contamination

ratio is large, we should use the indirect approach with the correctly specified model.

The above comparison is done based on the KL distance against f0. We repeat the above

calculation to obtain the corresponding results for the KL distance against f ∗0 . Note that

all the calculation is the same except we do not need to do the projection from 3GMM to

2GMM, because f ∗0 is 3GMM. The results are shown in Figure 7.

As we can see from Figure 7a, when the contamination ratio increases, the KL distances
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Figure 7: Comparison between the MLqE and the MLE in terms of KL distances against
f ∗0 : (a) shows KL distances obtained from the indirect approach, (b) shows KL distances
obtained from the direct approach, (c) shows both these two kinds of KL distances together
in order to compare their magnitude.

against f ∗0 (for both the MLqE and the MLE) increase first and then decrease. It means

that as outliers are gradually brought into the data, they first undermine the estimation for

the non-measurement error components, and then help the estimation of the measurement

error component. The MLqE starts slightly above the MLE. When outliers become helpful

for the estimation (ε > 2%), the MLqE goes below the MLE. As ε increases beyond 2%,

the advantage of the MLqE over the MLE first increases and then diminishes. Figure 7b is

also consistent with what we found in Figures 2a and 4a and 5a. In Figure 7c, we see that

the direct and indirect approaches are in about the same range. They intersect at around

ε = 2%, which suggests that, when estimating f ∗0 , we prefer the direct approach for the

mildly contaminated data, and prefer the indirect approach for the heavily contaminated

data.

6.2 Relative Efficiency

We can also compute the relative efficiency between the MLE and the MLqE using the same

model (equation (18)), f ∗0 (x; ε, σ2
c = 20).
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Figure 8: Comparison of the MLE and the MLqE based on relative efficiency.

At each level ε ∈ [0, 0.1], we generate 3,000 samples with sample size n = 100 according

to equation (18), f ∗0 (x; ε, σ2
c = 20), fit the 2GMM to the data using the MLqE, and calculate

the average KL against f0. We try the same procedure for the MLE, and find the sample

size nMLE(ε) at which the same average KL is obtained by the MLE. We plot the ratio of

these two sample sizes nMLE(ε)/100 in Figure 8.

As we can see, the relative efficiency starts below 1, which means, when the contami-

nation ratio is small, it takes the MLE fewer samples than the MLqE to achieve the same

performance. However, as the contamination ratio increases, the relative efficiency climbs

substantially above 1, meaning that the MLE will need more data than the MLqE to achieve

the same performance.

6.3 Gamma Chi-Square Mixture Model

We take a small digression and consider estimating a Gamma Chi-square mixture model,

f ∗0 (x) = (1− ε)Gamma(x; p, λ) + εχ2(x; d), (19)

where the second component is the measurement error component. We can think of our data

being generated from the Gamma distribution but contaminated with the Chi-square gross

error. In this section, we consider two scenarios:
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Scenario 1: p = 2, λ = 5, d = 5, ε = 0.2, n = 20

Scenario 2: p = 2, λ = 0.5, d = 5, ε = 0.2, n = 20

In each scenario, we generate 50,000 samples according to equation (19), fit the Gamma

distribution using both the MLqE and the MLE, and compare these two estimators based

on their mean square error (MSE) for p and λ. For the MLqE, we adjust q to examine the

effect of the bias-variance trade off. The results are summarized in Figure 9 (scenario 1) and

Figure 10 (scenario 2). In Figure 9, We see that, by setting q < 1, we can successfully trade

bias for variance and obtain better estimation. In scenario 1, since the Gamma distribution

and the Chi-square distribution are sharply different, the bias-variance trade off leads to a

significant reduction on the mean square error by partially ignoring the outliers. However,

in scenario 2, these two distributions are similar (the mean and variance of the Gamma

distribution are 4 and 8, the mean and variance of the Chi-square distribution are 5 and 10).

In this situation, partially ignoring the data points on the tails will not help much, which is

why the MSE of the MLqE is always larger than the MSE of the MLE.
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Figure 9: Comparison of the MLE and the MLqE in terms of the MSE for p̂ (Figure a) and
λ̂ (Figure b) in scenario 1 (p = 2, λ = 5, d = 5, ε = 0.2, n = 20).

28



0.8 0.85 0.9 0.95 1

0.8

1

1.2

1.4

1.6

1.8

2
q vs MSE for estimated p

q

M
S

E
 fo

r 
p 

i.e
. (

p.
ha

t−
p)

2

 

 

MSE
MLqE

MSE
MLE

MSE
MLqE

 +/− SE

MSE
MLE

 +/− SE

(a)

0.8 0.85 0.9 0.95 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16
q vs MSE for estimated λ

q

M
S

E
 fo

r λ
 i.

e.
 (λ

.h
at

−
λ)

2

 

 

MSE
MLqE

MSE
MLE

MSE
MLqE

 +/− SE

MSE
MLE

 +/− SE

(b)

Figure 10: Comparison of the MLE and the MLqE in terms of the MSE for p̂ (Figure a) and
λ̂ (Figure b) in scenario 2 (p = 2, λ = 0.5, d = 5, ε = 0.2, n = 20).

6.4 Old Faithful Geyser Eruption Data

We consider the Old Faithful geyser eruption data from Silverman (1986). The original data

is obtained from the R package “tclust”. The data is univariate eruption time length with

sample size of 272. We sort these eruption lengths by their times of occurrences, and lag these

lengths by one occurrence to form 271 pairs; thus we have two dimensional data (i.e., current

eruption length and previous eruption length). This is the same procedure as described in

Garcia-Escudero and Gordaliza (1999). For this two dimensional data, they have suggested

three clusters. Since the “short followed by short” eruptions are not usual, Garcia-Escudero

and Gordaliza (1999) identify these points in the lower left corner as outliers.

We plot the original data in Figure 11, fit the MLqE (q = 0.8) and the MLE to the data,

and plot the 2 standard deviation ellipsoids. q is selected based on clustering outcome. As

we can see, there are a few outliers in the lower left corner. The MLE is obviously affected by

the outliers. The lower right component of the MLE is dragged to the left to accommodate

these outliers, and thus misses the center of the cluster. Other components of the MLE are

also mildly affected. The MLqE, on the other hand, overcomes this difficulty and correctly
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Figure 11: Comparison between the MLqE and the MLE for the Old Faithful geyser data:
red triangles: MLqE means; red dashed lines: MLqE two standard deviation ellipsoids;
blue triangles: MLE means; blue dashed lines: MLE two standard deviation ellipsoids.

identifies the center of each component. This improvement is especially obvious for the lower

right component: the fitted MLqE lies in the center whereas the MLE is shifted to the left

and has a bigger 2 standard deviation ellipsoid.

7 SELECTION OF q

So far in this article, we have fixed q in all the analysis. In this section, we will discuss about

the selection of q.

The tuning parameter q governs the sensitivity of the estimator against outliers. The

smaller q is, the less sensitive the MLqE is to outliers. If the contamination becomes more

serious (i.e., larger ε and/or σ2
c ), we should use a smaller q to protect against measurement

errors. There is no analytical relation between the level of contamination and q, because

it depends on the properties of the non-measurement error components, the contamination

ratio and the variance of the contamination component. Furthermore, there is no guarantee
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that the measurement error component is a Normal distribution. Since all these assumptions

can be easily violated, it is impossible to establish an analytical relationship for q and the

contamination level.

When q 6= 1, the MLqE is an inconsistent estimator. Ferrari and Yang (2010) let q → 1 as

n→∞ in order to force the consistency. In our case, we allow the MLqE to be inconsistent

because our data is contaminated. We are no longer after the true underlying distribution f ∗0

that generates the data, but are more interested in estimating the non-measurement error

components f0 using the contaminated data. Since the goal is not to estimate f ∗0 , being

consistent will not help the estimator in terms of robustness.

Generally, it is very hard to choose q analytically. Currently, there is no universal way to

do so. Instead, we here present an example to illustrate the idea of selecting q. We generate

one data set using equation (18) f ∗0 (x; ε = 0.1, σ2
c = 40) with the sample size n = 200. We

will demonstrate how to select q for this particular data set.

First, we fit a 3GMM f̂3GMM to the data using the MLE. We identify the component

with the largest variance in f̂3GMM as the contamination component. We extract the non-

measurement error components and renormalize weights to get f̂3GMM→2GMM, which can be

considered as the projection from 3GMM to the 2GMM space. We go back to f̂3GMM, utilize

it to perform a parametric bootstrap by generating many bootstrap samples, and fit 2GMM

to these data sets using MLqE (f̂ b
MLqE

2GMM) with q varying between 0.7 and 1. We take the

q that minimizes the average KL distance between f̂3GMM→2GMM and the estimated 2GMM

f̂ b
MLqE

2GMM from the bootstrap samples. The average KL distance against q is shown in Figure

12. From the figure, we estimate q to be 0.82.

This is a very simple way to select q. It is straightforward and easy. However, there is

a drawback of this method. When the contamination ratio is very low (e.g., 1% or 2%) and

the sample size is small (n < 100), the estimated 3GMM f̂3GMM will not be able to estimate

the measurement error component correctly since there are very few outliers. Thus, the
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Figure 12: Selection of q based on average KL distance from the bootstrap samples.

parametric bootstrap approach following that will become unreliable. We have not found an

effective way of selecting q with the small contamination ratio.

In Ferrari and Yang (2010), they have mentioned using asymptotic variance and asymp-

totic efficiency as criteria for selecting q. However, obtaining asymptotic variance in the

mixture model case is also problematic and unreliable when sample size is small.

To obtain an analytical solution for q is hard. Currently, we have only some remedies

under a few situations, and are still looking for a universal way. However, we believe that

selecting q is a very important question and is one of major future research directions.

8 DISCUSSION

In this article, we have introduced a new estimation procedure for mixture models, namely

the MLqE, along with the EM-Lq algorithm. Our new algorithm provides a more robust

estimation for mixture models when measurement errors are present in the data. Simulation

results show superior performance of the MLqE over the MLE in terms of estimating the

non-measurement error components. Relative efficiency is also studied and shows superiority
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of the MLqE. Note that when q = 1, the MLqE becomes the MLE, so the MLqE can be

considered as a generalization of the MLE.

Throughout this article, we see that the MLqE works well with mixture models in the

EM framework. There is a fundamental reason for such a phenomena. Note that the M

step of the traditional EM solves a set of weighted likelihood equations with weights being

the soft labels. Meanwhile, the MLqE solves a different set of weighted likelihood equations

with weights being f 1−q. Therefore, incorporating the MLqE in the EM framework comes

down to determining the new weights that are consistent with both the soft labels and f 1−q.

Furthermore, we conjecture that, for any new types of estimators, as long as they only

involve solving sets of weighted likelihood equations, they should be able to be smoothly

incorporated in the mixture model estimation using the EM framework.

In order to achieve consistency for the MLqE, we need the distortion parameter q to

approach 1 as the sample size n goes to infinity. However, letting q converge to 1 will affect

the bias-variance trade off. So what is the optimal rate at which q tends to 1 as n → ∞?

Meanwhile, how to select q at different sample size is also an interesting topic. The distortion

parameter q adjusts how aggressive or conservative we are towards eliminating the effect of

outliers. Tuning of the distortion parameter q will be a fruitful direction for future research.

9 APPENDIX

Lemma 1. ∀m ∈ R and ∀a, b ∈ R+, it holds that

(i) Lq(ab) = Lq(a) + Lq(b) + (1− q)Lq(a)Lq(b) = Lq(a) + a1−qLq(b).

(ii) Lq(a
m) = Lq(a)1−(a1−q)m

1−a1−q .

(iii) Lq
(
a
b

)
= (1

b
)1−q(Lq(a)− Lq(b)).

(iv) Lq(a) is a concave function and Lq(a) ≤ a− 1.

Proof. (i) We know that Lq(ab) = (a1−q−1)+(b1−q−1)+(a1−q−1)(b1−q−1)
1−q , which proves (i).
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(ii) Lq(a
m) = a1−q−1

1−q
(a1−q)m−1
a1−q−1

= Lq(a)1−(a1−q)m

1−a1−q .

(iii) By (i), we have Lq(a/b) = Lq(a)/b1−q + Lq(1/b) = [Lq(a)− Lq(b)]/b1−q.

(iv) We have ∂2Lq(a)/∂a2 = −qa−q−1 < 0, hence, Lq(a) is concave. By the mean value

theorem of concave function: Lq(a)− Lq(1) ≤ (a− 1)∂Lq(x)

∂x

∣∣∣
x=1

⇒ Lq(a) ≤ a− 1.

Re-weighting Algorithm for MLqE: The re-weighting algorithm for solving the MLqE

in general is described as follows.

To obtain θ̂MLqE, we start with an initial estimate θ(1) which could be any sensible esti-

mate, we usually use θ̂MLE as the starting point. For each new iteration t (t > 1), θ(t+1) is

computed via

θ(t+1) =
{
θ : 0 =

n∑
i=1

U(xi; θ)f(xi; θ
(t))1−q

}
,

where U(x; θ) = ∇θ log f(x; θ) = f ′θ(x; θ)/f(x; θ). The algorithm is stopped when a certain

convergence criterion is satisfied, for example, the change in θ(t) is sufficiently small.

To obtain the MLqE for a normal distribution, the above algorithm is simplified as follows:

µ̂(t+1) =
1∑n

i=1w
(t)
i

n∑
i=1

w
(t)
i xi,

σ̂2
(t+1)

=
1∑n

i=1w
(t)
i

n∑
i=1

w
(t)
i (xi − µ̂(t+1))2,

where w
(t)
i = ϕ(xi; µ̂

(t), σ̂2
(t)

)1−q and ϕ is a normal probability density function.

In the M step of the EM-Lq algorithm, the above algorithm is further modified as follows:

µ
(t+1)
j =

1∑n
i=1 w̃

(t)
ij

n∑
i=1

w̃
(t)
ij xi,

σ2
j

(t+1)
=

1∑n
i=1 w̃

(t)
ij

n∑
i=1

w̃
(t)
ij (xi − µ(t+1)

j )2,
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where w̃
(t)
ij = τ̃j(xi,Ψ

old)ϕ(xi;µ
(t)
j , σ

2
j

(t)
)1−q. We iterate the above calculation until µ

(t)
j and

σ2
j

(t)
converge, and assign them to µnew

j and σ2
j

new
.

Proof of Theorem 3:

n∑
i=1

Lq(p(xi; Ψ)) =
n∑
i=1

Lq(
∑
z

p(xi, z; Ψ))

=
n∑
i=1

Lq(
∑
z

p(z|xi; Ψold)
p(xi, z; Ψ)

p(z|xi; Ψold)
) (20)

≥
n∑
i=1

∑
z

p(z|xi; Ψold)Lq

( p(xi, z; Ψ)

p(z|xi; Ψold)

)
(21)

=
n∑
i=1

∑
z

p(z|xi; Ψold)
Lq(p(xi, z; Ψ))− Lq(p(z|xi; Ψold))

p(z|xi; Ψold)1−q

=
n∑
i=1

EΨold

[ Lq(p(X,Z; Ψ))

p(Z|X; Ψold)1−q −
Lq(p(Z|X; Ψold))

p(Z|X; Ψold)1−q

∣∣∣X = xi

]
= B(Ψ,Ψold) + C(Ψold,Ψold),

where, from equation (20) to (21), we have used Jensen’s inequality on the Lq function due

to its concavity (Lemma 1, part (iv) in Section 9). When Ψ = Ψold, we have

B(Ψold,Ψold) + C(Ψold,Ψold) = A(Ψold,Ψold) =
n∑
i=1

Lq(p(xi; Ψold))

Proof of Theorem 4: Define

D(Ψ) =
n∑
i=1

Lq(p(xi; Ψ))−
(
B(Ψ,Ψold) + C(Ψold,Ψold)

)
≥ 0. (22)
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By theorem 3, we know that D(Ψold) = 0 and D(Ψ) ≥ 0, so D(Ψ) obtains its minimum at

Ψ = Ψold, i.e.,

∂

∂Ψ
D(Ψ)

∣∣∣
Ψ=Ψold

= 0.

Take the derivative of both sides of (22), we have the first part of the theorem. Together

with equation (7) and (8), we prove the rest of the theorem.

Proof of Theorem 5: For mixture models, we plug equation (10) and (11) in B,

B(Ψ,Ψold) =
n∑
i=1

EΨold

[ Lq(∏k
j=1(πjfj(X; θj))

Zj)

(
∏k

j=1(
πold
j fj(X;θoldj )

f(X;Ψold)
)Zj)1−q

∣∣∣X = xi

]

=
n∑
i=1

k∑
j=1

Lq(πjfj(xi; θj)) ·
p(Zj = 1, Z−j = 0|X = xi; Ψold)

(
πold
j fj(xi;θoldj )

f(xi;Ψold)
)1−q

=
n∑
i=1

k∑
j=1

τj(xi,Ψ
old)qLq(πjfj(xi; θj)).

Proof of Theorem 6: Apply the first order condition on B (note πk = 1−
∑k−1

j=1 πj),

∂

∂θj
B(Ψ,Ψold) =

n∑
i=1

τ̃j(xi,Ψ
old)

∂
∂θj
fj(xi; θj)

fj(xi; θj)
(πjfj(xi; θj))

1−q, (23)

∂

∂πj
B(Ψ,Ψold) =

n∑
i=1

τ̃j(xi,Ψ
old)

fj(xi; θj)

(πjfj(xi; θj))q
−

n∑
i=1

τ̃k(xi,Ψ
old)

fk(xi; θk)

(πkfk(xk; θk))q

=
n∑
i=1

τ̃j(xi,Ψ
old)fj(xi; θj)

1−q

πqj
−

n∑
i=1

τ̃k(xi,Ψ
old)fk(xi; θk)

1−q

πqk
, (24)

⇒ 0 =
n∑
i=1

τ̃j(xi,Ψ
old)

∂
∂θj
fj(xi; θj)

fj(xi; θj)
fj(xi; θj)

1−q and πj ∝
[ n∑
i=1

τ̃j(xi,Ψ
old)fj(xi; θj)

1−q
] 1

q
.
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Proof of Theorem 4 for the mixture model case: By equations (23) and (24), the

derivatives of B at Ψ = Ψold are,

∂

∂θj
B(Ψ,Ψold)

∣∣∣
Ψ=Ψold

=
n∑
i=1

(πold
j fj(xi; θ

old
j )

f(xi; Ψold)

)q
·

∂
∂θj
fj(xi; θj)

∣∣
θj=θoldj

fj(xi; θold
j )

(πold
j fj(xi; θ

old
j ))1−q

=
n∑
i=1

πold
j

(
∂
∂θj
fj(xi; θj)

∣∣
θj=θoldj

)
f(xi; Ψold)q

,

∂

∂πj
B(Ψ,Ψold)

∣∣∣
Ψ=Ψold

=
n∑
i=1

(πold
j fj(xi; θ

old
j )

f(xi; Ψold)

)q fj(xi; θold
j )1−q

(πold
j )q

−
n∑
i=1

(πold
k fk(xi; θ

old
k )

f(xi; Ψold)

)q fk(xi; θold
k )1−q

(πold
k )q

=
n∑
i=1

fj(xi; θ
old
j )− fk(xi; θold

k )

f(xi; Ψold)q
.

We calculate the derivatives of
∑n

i=1 Lq(p(xi; Ψ)) at Ψ = Ψold,

∂

∂θj

n∑
i=1

Lq(p(xi; Ψ))
∣∣∣
Ψ=Ψold

=
n∑
i=1

πold
j

(
∂
∂θj
fj(xi; θj)

∣∣
θj=θoldj

)
f(xi; Ψold)q

,

∂

∂πj

n∑
i=1

Lq(p(xi; Ψ))
∣∣∣
Ψ=Ψold

=
n∑
i=1

fj(xi; θ
old
j )− fk(xi; θold

k )

f(xi; Ψold)q
.

By comparing the formulas above, we obtain the first equation of the theorem. Together

with equation (7) and (8), we prove the rest of the theorem.
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