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Abstract—In this paper, we introduce the concept of principal
communities and propose a principal graph encoder embedding
method that concurrently detects these communities and achieves
vertex embedding. Given a graph adjacency matrix with vertex
labels, the method computes a sample community score for each
community, ranking them to measure community importance
and estimate a set of principal communities. The method then
produces a vertex embedding by retaining only the dimensions
corresponding to these principal communities. Theoretically,
we define the population version of the encoder embedding
and the community score based on a random Bernoulli graph
distribution. We prove that the population principal graph
encoder embedding preserves the conditional density of the vertex
labels and that the population community score successfully
distinguishes the principal communities. We conduct a variety
of simulations to demonstrate the finite-sample accuracy in
detecting ground-truth principal communities, as well as the
advantages in embedding visualization and subsequent vertex
classification. The method is further applied to a set of real-
world graphs, showcasing its numerical advantages, including
robustness to label noise and computational scalability.

Index Terms—Graph Embedding, Dimension Reduction, Ran-
dom Graph Model

I. INTRODUCTION

RAPH data has become increasingly popular over the

past two decades. It plays a pivotal role in modeling
relationships between entities across a wide array of domains,
including social networks, communication networks, webpage
hyperlinks, and biological systems [1]-[6]. Given n vertices
and s edges, a binary graph can be represented by an adjacency
matrix A € {0,1}"*™, where A(i,j) = 1 means there exists
an edge between vertex ¢ and vertex j, and O otherwise. The
high dimensionality of graph data, dictated by the number of
vertices, often necessitates dimension reduction techniques for
subsequent inferences.

Dimension reduction techniques applied to graph data
are commonly referred to as graph embedding. Specifically,
graph embedding transforms the adjacency matrix into a
low-dimensional Euclidean representation per vertex. While
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many such techniques exist, two popular and theoretically
sound methods are spectral embedding [7] and node2vec [8],
with asymptotic theoretical guarantees such as convergence
to the latent position [9] and consistency in community re-
covery [10], under popular random graph models such as the
stochastic block model and random dot graph model [11]-
[13]. The resulting vertex embeddings facilitate a wide range
of downstream inference tasks, such as community detection
[14], [15], vertex classification [16], [17], and the analysis of
multiple graphs and time-series data [18], [19].

The scalability of spectral embedding is often a bottleneck
due to its use of singular value decomposition, which can be
time-consuming for moderate to large graphs. When vertex
labels are available for at least part of the vertex set, a
recent method called one-hot graph encoder embedding [20],
which can be viewed as a supervised version of spectral
embedding, is significantly faster yet shares similar theoretical
properties, such as convergence to the latent positions. It also
has several applications to weighted, multiple, and dynamic
graphs [21]-[24], often exhibiting significantly better finite-
sample performance over spectral embedding with a fraction
of the time required.

Building upon the one-hot graph encoder embedding, this
paper proposes a principal graph encoder embedding algo-
rithm. The key addition is the introduction of a sample com-
munity score that ranks the importance of each community.
The community score is then used to estimate a set of principal
communities that contribute to the decision boundary for sep-
arating vertices of different communities. Due to the duality of
community and dimensionality in the encoder embedding, the
principal graph encoder embedding achieves further dimension
reduction by restricting the embedding to the dimensions
corresponding to the principal communities. The proposed
algorithm maintains the same computational complexity as the
original encoder embedding, making it significantly faster than
other graph embedding techniques. Additionally, the reduced
dimensionality enhances both the speed and robustness of
subsequent inference, particularly in the presence of a large
number of redundant or noisy communities.

To theoretically justify the sample algorithm, we provide
a population characterization of the encoder embedding and
principal communities. We prove, under a random Bernoulli
graph model, that the principal graph encoder embedding
preserves the conditional density of the label vector, making
the proposed method Bayes optimal for vertex classification.
Furthermore, under a regularity condition, we demonstrate
that the proposed sample community score converges to a
population community score, which equals zero if and only



if the corresponding community is not a principal community.

Through comprehensive simulations and real-data experi-
ments, we validate the numerical performance and theoret-
ical findings through embedding visualization, ground-truth
principal community detection, and vertex classification. The
proposed method demonstrates excellent numerical accuracy,
computational scalability, and robustness against noisy data.
Theorem proofs are provided in the appendix. The code and
data are available on GitHub'.

II. THE MAIN METHOD

In this section, we present the principal graph encoder
embedding method for a given sample graph, followed by
discussions on several practical issues such as normalization,
sample community score threshold, and label vector availabil-

1ty.

A. Principal Graph Encoder Embedding

« Input: The graph adjacency matrix A € {0,1}"*™ and a
label vector Y € {0,1,..., K}", where 1 to K represent
known labels, and 0 is a dummy category for vertices with
unknown labels.

o Step 1: Compute the number of known observations per
class, i.e.,

ng = Z 1(Y (i) = k)

fork=1,..., K.
« Step 2: Compute the matrix W € [0,1]"*¥ as follow:
for each vertex ¢ = 1,...,n, set

W(’i, k‘) = 1/nk

if and only if Y(i) = k, and O otherwise. Note that
vertices with unknown labels are effectively assigned zero
values, i.e., W (3, :) is a zero vector if Y (i) = 0.

o Step 3: Compute the original graph encoder embedding
through matrix multiplication:

Z = AW ¢ [0, 1]"*¥.

o Step 4 (Normalization): Given Z from step 3, for each
i where ||Z(i,-)|| > 0, update the embedding as follows:
) Z(i,-)
200 = iz,
o Step 5 (Sample Community Score): Based on Z in step
4, for each k € [1, K|, compute the sample community
score as follows:

maxj=1, . g{A(kll)} —min—; g {p(k|l)}

k) = — ;
max;—1,.. k{6 (Z(k|l))}
where

i S 2 k)

k) = —
. SEOT 2 k)
52 (k|l) = ==t — [*(k|D),

n; — 1

Ihttps://github.com/cshen6/GraphEmd

then set the estimated principal communities as D =
{k € [1,K] and A(k) > €} for a positive threshold .
The choice of € is discussed in later subsection.

o Step 6 (Principal Encoder): Denote the embedding
limited to D in Z as ZP. Then re-normalize each vertex
embedding, i.e., for each i, set

z0(,) = 20D
12 (i, D)|

o Output: The original graph encoder embedding Z, the
principal graph encoder embedding Z”, the sample com-
munity score {\(k)}, and the estimated set of principal
communities D.

Note that steps 1 to 3 compute the original graph encoder
embedding method as described in [20], while the normal-
ization in step 4 was employed in [21], [25]. Therefore, the
main contributions of this work lie in steps 5 and 6, where we
compute the sample community score for each community,
restrict the original embedding to the estimated principal
communities, and re-normalize to yield the proposed principal
graph encoder embedding. R

It is important to note that Z” does not remove any obser-
vations from the embedding; rather, it only removes the kth
dimension when community k is not a principal community,
ie., ZP € R"*IPI Every vertex, whether it is from a principal
community or not, is always present in the final embedding
VA

B. On Normalization

Normalization, a well-known technique in many methods,
ensures that all vertex embeddings have the same norm. In the
context of graph encoder embedding, normalization projects
the resulting sample embedding onto a unit sphere, which
helps eliminate degree differences and often leads to improved
separation among communities [25]. This is particularly ben-
eficial for heterogeneous graphs, which are common in real-
world data. In our case, normalization ensures that the sample
community score behaves well empirically. This is because the
sample community score involves the computation of sample
expectations and variances, and normalized embeddings effec-
tively exclude degree variance from these calculations.

C. The Community Score

The community score is designed to measure the importance
of each community and serves as the basis for selecting
the principal communities. Intuitively, in the original graph
encoder embedding, the kth dimension can be interpreted as
the average connectivity of the target vertex to all vertices
in community k. Therefore, the proposed community score
checks whether there is significant variability within dimen-
sion k, or equivalently, whether the connectivity from other
communities to community k& is close to a constant or not.
If the connectivity is almost the same, the numerator will be
relatively small, or in the extreme case, simply zero, indicating
that community £ has no information in separating other
communities.



A practical question is how large the score should be for
a community to qualify as principal. One possible approach
is to rank the community scores and decide a proper cut-off
via cross-validation. In the presented algorithm, we opt for
a faster approach using an adaptive threshold e for cut-off.
To determine this threshold, we employ the profile likelihood
method from [26], a popular technique for selecting an elbow
threshold given a vector. We choose the third elbow of all
sample community scores, denoting it as €, and then set € =
max{ea,0.7}.

Empirically, the third elbow is very effective for large values
of n and K. However, for smaller to moderate values of
(n, K), the third elbow may be overly conservative. Through
experimentation across various models and real datasets, it has
been observed that principal communities typically have scores
around or higher than 1, while redundant communities tend to
have scores of no more than 0.5 for small (n, K). As a result,
we settled on the maximum of the third elbow and 0.7 as an
empirical choice for e.

D. On Label Vector

Note that the given algorithm assumes knowledge of the
label vector Y € {0,1,...,K}™, which is at least partially
known, where 0 denotes the dummy category of unknown
labels. However, the method can also be used without the
label vector. One could either use a random initialization and
k-means to estimate the ground-truth labels [25], or employ a
direct label estimation algorithm such as Louvain, Leiden, or
label propagation [27]-[30] to estimate a label vector directly
from the graph. In either scenario, one can compute the
community score and principal encoder accordingly for any
estimated label vector. The meaning of principal communities
will pertain to the estimated labels, and the population theories
in the next section still apply. Therefore, it suffices to assume
a given label vector for the purpose of this paper, regardless
of whether the label vector is ground-truth or estimated from
some algorithms.

E. Computational Complexity

The computational complexity of the principal graph en-
coder embedding (P-GEE) is the same as the original graph
encoder embedding (GEE), which is O(nK + s), where s
represents the number of edges [20], [22]. This is because
neither the normalization nor the community score computa-
tion increases the overall complexity.

For instance, the method is capable of embedding a graph
with 100,000 vertices, 40 classes, and 10 million edges in
under 10 seconds on a standard computer using MATLAB
code. While the additional steps 5-6 in P-GEE may make it
marginally slower than GEE, the reduced dimensionality of
ZP can actually enhance its speed and scalability for subse-
quent tasks such as vertex classification. This is demonstrated
in our real data experiments.

III. POPULATION DEFINITION AND SUPPORTING THEORY

In this section, we characterize the population behavior of
the method on random graph models. We begin by reviewing

several popular random graph models, followed by the intro-
duction of a random graph variable. We then define the popula-
tion version of the principal community and the graph encoder
embedding for this graph variable. This framework allows us
to prove that the principal graph encoder embedding preserves
the conditional density of the label vector. Additionally, we
demonstrate that the sample community score converges to a
population community score, which, under a regularity condi-
tion, equals zero if and only if the corresponding community is
not a principal community. It is important to note that while the
other sections focus on the sample method applied to sample
graphs, everything in this section pertains to the population
version of the method.

A. Existing Random Graph Models

The Stochastic Block Model: The standard stochastic block
model (SBM) is a widely used graph model known for its
simplicity and ability to capture community structures [11],
[31], [32]. Under SBM, each vertex 7 is first assigned a
class label Y (i) € {1,...,K}. This label can either be
predetermined or assumed to follow a categorical distribution
with prior probabilities {7}, € (0,1], Y0, 7 = 1}.

Given the vertex labels, the model independently generates
each edge between vertex ¢ and another vertex j 7 ¢ using a
Bernoulli random variable:

A (i, j) ~ Bernoulli(B(Y (i), Y(5)))-

Here, B = [B(k,0)] € [0,1]5*X represents the block
probability matrix, which serves as the parameters of the
model. In a directed graph, the lower diagonal of the adjacency
matrix is generated using the same distribution, while in an
undirected graph, the lower diagonals are set to be equal to the
upper diagonals. Note that the model does not have self-loops,
meaning that A(4,7) = 0. Additionally, whether the graph is
directed or undirected does not affect the results discussed in
this paper.

The Degree-Corrected Stochastic Block Model: The stan-
dard stochastic block model (SBM) generates dense graphs
where all vertices within the same class have the same
expected degrees. However, many real-world graphs are het-
erogeneous, with different vertices having varying degrees, and
the graph can be very sparse. To accommodate this, the degree-
corrected stochastic block model (DC-SBM) was introduced
as an extension of SBM [12].

In addition to the existing parameters of SBM, DC-SBM
assigns a non-negative and bounded degree parameter 6; to
each vertex 7. Given these degrees, the edge between vertex ¢
and another vertex j # 4 is independently generated by:

A(i,7) ~ Bernoulli(6;0, B(Y (i), Y (5))).

When all degrees are set to 1, DC-SBM reduces to the
standard SBM. Typically, degrees may be assumed to be fixed
a priori or independently and identically distributed within
each community. These degree parameters allow DC-SBM to
better approximate real-world graphs.



The Random Dot Product Graph: Under the random dot
product graph (RDPG), each vertex ¢ is associated with a
hidden latent variable U; "% f; € R™ [13], [33]. Then

each edge is independently generated as follows:
A(i,7) ~ Bernoulli(< U;, U; >),

where < -,- > denotes the inner product. To enable commu-
nities under RDPG, it suffices to assume the latent variable
follows a K-component mixture distribution. In other words,
each vertex is associated with a class label Y (i) such that

Ui|(Y (i) = k) "~ fup.

B. Defining a Graph Variable

To characterize the graph embedding using a framework
similar to the conventional setup of predictor and response
variables, we formulate the above graph models into the
following graph variable, called the random Bernoulli graph
distribution.

Given a vertex, we assume Y is the underlying label
that follows a cat%gorical distribution with prior probabilities
{m, € (0,1],%°,_; m = 1}. Additionally, X € RP? is
the latent variable with a K-component mixture distribution,
denoted as

K
X ~ E TefX|Yy=k>
k=1

where fx|y—y represents the conditional density.

Moreover, we assume a known label vector y =
{v1,v2,...,vm} € [1, K]™, where each k € [1, K] is present
in V. Additionally, there exists a corresponding random matrix

U=[U1;Us; ;Up) € R™P,

where each U; is independently distributed with density
f X|Y=uv;-

Definition 1. We define an m-dimensional random variable
A following the random Bernoulli graph distribution as

A~ RBG(X,V,6) € {0,1}™,
if and only if each dimension A; is distributed as
A; ~ Bernoulli(6(X,U;)),j=1,...,m.

Here, 0(-,-) : RP x RP — [0,1] can be any deterministic
function, such as weighted inner product or kernel function.

Note that V is a known vector. Alternatively, one could
view it as independent sample realizations using the same
categorical distribution of Y. As we have required each integer
from 1 to K to be present in V, it necessarily implies m > K.

In essence, the random Bernoulli graph distribution is a
multivariate concatenation of mixture Bernoulli distributions.
In this distribution, the probability of each Bernoulli trial
is determined by a function involving the latent variable X
and an independent copy U; with a known label v;. The
random Bernoulli graph distribution is a versatile framework
encompassing SBM, DC-SBM, RDPG, and more general

cases, due to its flexibility in allowing any 0(-,-) and any
particular distribution for X.

Consider the sample adjacency matrix and the labels
(A)Y) € {0,1}™*™ x {1,2,..., K}™ as an example, where
the graph has no self-loop. Then, for each i = 1,...,n, the
ith row of A is distributed as

A(i,:) ~RBG(X,V,4),

where X is the underlying latent variable for vertex ¢, and %
is the known sample labels of all other vertices. Note that the
dimension m = n — 1 because A(7,7) = 0, and it suffices to
consider the edges between vertex ¢ and all other vertices.

C. The Principal Graph Encoder Embedding for the Graph
Variable

In this section, we characterize the population version of the
original graph encoder embedding, the principal community,
and the principal graph encoder embedding on the graph
variable. Note that their sample notations are Z, ﬁ, and ZP
respectively in Section II, and the corresponding population
notations are Z, D, and ZP respectively in this section.

Definition 2. Given a random graph variable A ~
RBG(X,V,0). For each k =1,..., K, calculate

m

my = Z 1(v; = k),

Jj=1

where 1(v; = k) equals 1 if v; =k, and 0 otherwise.
We then compute the matrix W € R™*X as follows:

1/mk
0 otherwise.

when v; =k,

The population graph encoder embedding is then defined as
Z =AW € [0,1]¥.

Note that the W matrix is conceptually similar to the one-
hot encoding scheme, except the entries are normalized rather
than binary. Next, we introduce the concepts of principal and
redundant communities for the graph variable:

Definition 3. Given A ~ RBG(X,V,6), and U* as an
independent variable distributed as fx|y—j. A community k
is defined as a principal community if and only if

Var (E(5(X,U*) | X)) > 0.

On the other hand, any community for which the above
variance equals 0 is referred to as a redundant community.

For example, in the stochastic block model, the condition
Var(E(5(X,U*) | X)) = 0 is equivalent to the kth column
of the block probability matrix B(:, k) being a constant vector,
which does not provide any information about Y via the edge
probability. Finally, the principal graph encoder embedding
can be defined as follows:

Definition 4. Define D as the set of principal communities,
and ZP as the graph encoder embedding whose dimensions
are restricted to the indices in D. We call ZP the principal
graph encoder embedding.



For example, if K = 5 and D = {1,2}, then Z spans
five dimensions while Z” only keeps the first two dimensions
from Z. The principal graph encoder embedding achieves
additional dimension reduction compared to the original graph
encoder embedding. Given the population definitions, the
sample versions Z, 15, and ZP in Section II can be viewed
as sample estimates for the population counterparts Z, D, and
zZP.

D. Conditional Density Preserving Property

Based on the population setting, we can prove the principal
graph encoder embedding preserves the conditional density,
and as a result, preserves the Bayes optimal classification error
via the classical pattern recognition framework [34].

Theorem 1. Given A ~ RBG(X,V,6), the principal graph
encoder embedding preserves the following conditional den-
sity:

dist dist

YIAZLY|ZEY|ZP.
Denote L*(Y, A) as the Bayes optimal error to classify Y
using A, we have

L*(Y,A) = L*(Y, Z) = L*(Y, ZP).

Intuitively, the graph variable A is an m-dimensional mul-
tivariate concatenation of mixture Bernoulli distributions, the
original graph encoder embedding Z is a K-dimensional
multivariate concatenation of mixture Binomial distributions,
and the principal graph encoder embedding Z” discards
every dimension in Z whose Binomial mixture component is
equivalent to a single Binomial.

Note that this property is on the population level. For the
sample version, we expect the property to hold for sufficiently
large vertex size, rather than at any n, due to sample estimation
variance. Moreover, the property does not imply that any clas-
sifier can be asymptotically optimal for the sample embedding.
Only when using the theoretical optimal Bayes classifier on the
embedding ZP will the resulting optimal error be the same as
the theoretical optimal error using the original graph variable
A.

This theorem shows that the principal communities are well-
defined, and retaining the dimensions corresponding to the
principal communities is sufficient for subsequent vertex clas-
sification. While both the original graph encoder embedding
and the principal graph encoder embedding are equivalent in
population, the principal graph encoder embedding has fewer
dimensions and therefore usually provides a finite-sample
advantage in subsequent inference.

E. Population Community Score

While Theorem 1 establishes that the principal community
is well-defined and preserves the conditional density, it re-
mains to demonstrate that the proposed community score can
effectively detect such principal communities. To this end, we
first introduce the population community score:

Definition 5. Define
maxl:L___K{E(Zk\Y = l)}

maxlzl’m)K{ VCL’I"(Z;C‘Y = Z)}

__miny A B(ZY =D [0, +00)

max;=1,. g {\/Var(Zy|Y =1)}

as the population community score for each community k €
[1, K.

Ak) =

Since the sample community score used in Step 5 of
Section II-A relies on the sample expectation and variance,
which converge to their respective population counterparts, it
follows immediately that

AE) "2 N (k).

In other words, the sample community score converges to the
population community score.

The following theorem proves that, under a regularity
condition, the population community score perfectly separates
principal communities from redundant communities.

Theorem 2. Assume A ~ RBG(X,V), and §(X,U")|Y is
independent of X|Y, which is satisfied under the stochastic
block model. Then the population community score A(k) =0
if and only if community k is a redundant community.

Note that the condition 6(X, U¥)|Y is independent of X |V’
can also hold for the degree-corrected stochastic block model,
as shown in the proof. Since DC-SBM is often a realistic
model for many real-world graphs, we can expect the designed
community score to perform well in practice. It is important
to emphasize that this property holds at the population level,
meaning it is expected to perform well for sufficiently large
vertex sizes rather than any finite n, due to sample estimation
variance.

Finally, there exist other alternative statistics that can consis-
tently detect principal communities. For example, as shown in
the proof, one could use the numerator of the community score
or the variance of F(Z;|Y = [), both of which also equal zero
under the same condition. Nevertheless, the numerator based
on order statistics makes it more robust, and the denominator
provides effective normalization for ranking and thresholding
purposes, making the proposed community score well-behaved
and robust in empirical assessments.

IV. SIMULATIONS

We consider three simulated models with K = 20 and
increasing n. In each model, vertex label assignment is ran-
domly determined based on prior probabilities: 7, = 0.25 for
k ={1,2,3}, then equally likely to be 0.25/(K — 3) for the
remaining classes. Given these labels, edge probabilities are
generated under each model. Here are the details of the model
parameters for each:

o SBM: Block probability matrix: B(k,k) = 0.2 for k =
{1,2,3}, and B(k,l) = 0.1 otherwise.
o DC-SBM: Vertex degree generation:

0,/(Y (i) = y) ~ Beta(1,5 + y/5).



Block probability matrix: B(1,1) = 0.9, B(2,2) = 0.7,
B(3,3) = 0.5, and B(k,l) = 0.1 otherwise.
« RDPG: Latent variable U € R*. For k = {1,2, 3},

U(:, k)|(Y = k) ~ Uniform(0.2,0.3).
For k& > 3,
U(:, k)|(Y > 3) ~ Uniform(0.1,0.2).
For all dimensions [ # k.
U(:,)|(Y = k) ~ Uniform(0,0.1).

In all three models, the parameter settings are designed such
that vertices from the top three communities can be perfectly
separated on a population level, and these communities are
considered the principal communities, represented as D =
{1,2,3}. On the other hand, vertices from the remaining
communities are intentionally designed to be indistinguishable
from each other, constituting redundant communities. As a
result, 75% of the vertices belong to the principal communities
and can be perfectly separated with a large sample size, while
the remaining 25% of the vertices cannot be distinguished
from each other.

A. Embedding Visualization and Sample Community Score

Figure 1 shows the adjacency matrix heatmap for one
sample realization, the visualization of the resulting principal
graph encoder embedding, and the sample community score
for each dimension. The first column shows the heatmap of
the generated adjacency matrix A. The sample indices are
sorted by class to highlight the block structure. All three
graphs exhibit a similar block structure, with higher within-
class probabilities for the top three communities. The SBM
graph is the most dense graph, followed by RDPG, and the
DC-SBM graph is the most sparse by design.

The second column presents the sample community scores
X(k) based on the proposed sample method. Clearly, the
sample scores for the first three communities / dimensions
stand out and are significantly higher than the others. As a
result, the proposed method successfully identifies and reveals
the ground-truth dimension, setting D = D = {1,2, 3}.

The third column visualizes the principal graph encoder
embedding Z”. Each dot represents the embedding for a
vertex, and different colors indicate the class membership of
each vertex, particularly those from the principal communities.
Since D = D = {1,2,3}, the embedding is in 3D and
occupies the top three dimensions. We observe that the encoder
embedding effectively separates the top three communities,
while all redundant communities are mixed together and
cannot be distinguished, which aligns with the given models.

B. Detection Accuracy and Vertex Classification

Using the same simulation models, we further assess the
capability of the proposed method to identify the ground-
truth dimensions and evaluate the quality of the embedding
through a classification task on the vertex embedding. For each
model, we generate sample graphs with increasing n, compute

the sample community score, report accuracy in detecting
the ground-truth principal communities, compute the principal
graph encoder embedding (using training labels only via 5-fold
evaluation), apply linear discriminant analysis as the classifier,
and report the testing error on the testing vertices. This process
is repeated for 100 Monte-Carlo replicates for each n, ensuring
that all standard deviations fall within a margin of 1%. The
average results are reported in Figure 2.

The first column of Figure 2 shows the sample community
scores as n increases. The red line represents the average
sample community score among the principal communities,
while the blue line represents the average sample community
score among the redundant communities. For all three models,
as n increases, the principal communities and the redundant
communities become increasingly separated in the sample
scores.

This separation translates well to the second column of
Figure 2, which shows that the sample algorithm quickly
achieves a true positive rate of 1 and a false positive rate of
0 in detecting the true principal communities. In other words,
Prob(f) = D) — 1 for sufficiently large n. This implies that
our method is consistent in detecting the ground-truth principal
communities.

The third column of Figure 2 evaluates the quality of the
graph embedding by conducting a 5-fold vertex classification
task on the sample embedding. Specifically, we divide the
vertices into 5 folds and test each fold individually. In each
instance, we compute the sample embedding by setting all
testing labels to 0, apply linear discriminant analysis to the
embedding and labels of the training vertices, predict the
testing labels using the embedding of the testing vertices, and
then calculate the error by comparing the predicted label to the
true testing label. According to the population model, we can
compute that the optimal Bayes error is approximately 0.235
across all three models.

As the sample size increases, we observe that the classi-
fication error using the principal graph encoder embedding
converges to the Bayes optimal error, as does the encoder
embedding without principal community detection. This phe-
nomenon supports the theorem that the encoder embedding in-
deed preserve the conditional density. While both the original
embedding and the principal version converge to the optimal
error, the principal version appears to perform slightly better
across all settings. This improvement is due to reduced dimen-
sion while preserving the label information, which benefits the
sample classification.

V. REAL DATA
A. Setting

We collected a diverse set of real graphs with associated
labels from various sources, including the Network Reposi-
tory” [35], Stanford Network Data®, and internally collected
graph data. To ensure transparency and reproducibility, we
processed all public datasets using MATLAB and have made
them available on our GitHub repository.

Zhttp://networkrepository.com/
3https://snap.stanford.edu/
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Fig. 1. This figure visualizes the sample adjacency matrix for each model at n = 5000 and K = 20, the sample community scores for k € [1,20], and the

principal graph encoder embedding.

Since the ground-truth principal communities are unknown
in real graphs, we primarily use vertex classification on
embedding as a proxy to evaluate the embedding quality. We
compare this to the original graph encoder embedding to assess
the quality of the principal community detection. We use
5-fold cross-validation and linear discriminant analysis, and
compare the graph encoder embedding (GEE), the principal
graph encoder embedding (P-GEE), the adjacency spectral
embedding (ASE), and node2vec (N2V). ASE requires an
explicit dimension choice, which is set to d = 30. For
node2vec, we use the graspy package [36] with default param-
eters and 128 dimensions. Any directed graph was transformed

to undirected, and any singleton vertex was removed.

B. Using Original Data

Table I summarizes the average error and standard deviation
after conducting 100 Monte Carlo replicates for each given
graph. It also provides basic dataset details, including n,
K, and the median dimension choice |D| for P-GEE. The
numerical results clearly indicate that both GEE and P-GEE
deliver excellent performance across all datasets, outperform-
ing spectral embedding in all cases and node2vec in most
cases. We also observe that the proposed principal graph en-
coder embedding is generally very close to the original graph



encoder embedding in classification error: by detecting and
only retaining the dimensions corresponding to the principal
communities, the principal GEE either maintains or slightly
improves the classification error compared to the original GEE
throughout all real data (except the IIP data with K being only
3).

This implies that as long as K is not too small, the
principal GEE successfully extracts important communities
that preserve sufficient label information and improves the
classification error, consistent with the numerical behavior
observed in the simulations. Another observation is that the
encoder embedding produces the best error in most cases,
and in the two cases where node2vec yields better error than
GEE, GEE is also very close in error, suggesting its overall
satisfactory performance.

C. Using Noisy Data

To further demonstrate the advantage and robustness of P-
GEE, we conducted a noisy data experiment. We used the
same real data and evaluation as above, with the exception
that the vertex labels were partially polluted. Specifically, for
each replicate, we randomly assigned 10% of the ground-
truth vertex labels to one of 30 additional noise classes. For
example, suppose K = 3 and vertex 1 belongs to class
2, so Y(1) = 2. If vertex 1 is not polluted, we have
Ynoise(1) = Y (1) = 2; otherwise, Y™°¢(1) € [4,5,...,33]
with equal probability.

We then used the given graph and noisy labels Y"°¥¢ to
perform vertex embedding and classification for GEE, P-GEE,
and ASE, and reported the results in Table II. Comparing
vertex classification accuracy, we observed that P-GEE con-
sistently outperforms GEE and ASE in most cases. In fact,
P-GEE is nearly insusceptible to label noise, achieving ideal
error rates on the noisy data in most cases. Here, “ideal error”
can be defined as the best error on the original data in the
corresponding row of Table I, plus approximately 10%. For
example, on the IMDB data, the best error on the original data
is 1%, while P-GEE achieves an error of 10.2% on the noisy
data, compared to a much worse error of 28.3% for GEE on
the noisy data. Similarly, on the PubMed data, the best error
on the original data is 22.6%, with P-GEE achieving an error
of 32.3% on the noisy data, while GEE on the noisy data has
a higher error of 39.0%.

We also observed that the estimated number of principal
communities |ﬁ| accurately matches the true K of the original
data in most cases, indicating that the sample community score
remains robust and well-behaved in the presence of noisy data.

Finally, we compared the running times of GEE, P-GEE,
and ASE, including both embedding and classification time.
While the running times for P-GEE and GEE are mostly
similar, the reduced dimensionality in P-GEE speeds up sub-
sequent classification, leading to noticeable improvements in
running time. Both GEE and P-GEE are significantly faster
than spectral embedding for moderate to large graph sizes. For
example, for relatively larger graphs, such as LastFM, letter,
and protein data, which have tens of thousands of vertices,
spectral embedding requires several seconds, whereas GEE
only takes a fraction of a second.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proceedings of National Academy of Science,
vol. 99, no. 12, pp. 7821-7826, 2002.

M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.

A. Barabdsi and Z. N. Oltvai, “Network biology: Understanding the
cell’s functional organization,” Nature Reviews Genetics, vol. 5, no. 2,
pp. 101-113, 2004.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang,
“Complex networks: Structure and dynamics,” Physics Reports, vol. 424,
no. 4-5, pp. 175-308, 2006.

L. Varshney, B. Chen, E. Paniagua, D. Hall, and D. Chklovskii, “Struc-
tural properties of the caenorhabditis elegans neuronal network,” PLoS
Computational Biology, vol. 7, no. 2, p. €1001066, 2011.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of
the facebook social graph,” arXiv preprint arXiv:1111.4503, 2011.

C. Priebe, Y. Parker, J. Vogelstein, J. Conroy, V. Lyzinskic, M. Tang,
A. Athreya, J. Cape, and E. Bridgeford, “On a "two truths’ phenomenon
in spectral graph clustering,” Proceedings of the National Academy of
Sciences, vol. 116, no. 13, pp. 5995-5600, 2019.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855-864,
2016.

D. Sussman, M. Tang, D. Fishkind, and C. Priebe, “A consistent adja-
cency spectral embedding for stochastic blockmodel graphs,” Journal of
the American Statistical Association, vol. 107, no. 499, pp. 1119-1128,
2012.

Y. Zhang and M. Tang, “A theoretical analysis of deepwalk and node2vec
for exact recovery of community structures in stochastic blockmod-
els,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, pp. 1065-1078, February 2024.

B. Karrer and M. E. J. Newman, “Stochastic blockmodels and com-
munity structure in networks,” Physical Review E, vol. 83, p. 016107,
2011.

Y. Zhao, E. Levina, and J. Zhu, “Consistency of community detection
in networks under degree-corrected stochastic block models,” Annals of
Statistics, vol. 40, no. 4, pp. 2266-2292, 2012.

A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T.
Vogelstein, K. Levin, V. Lyzinski, Y. Qin, and D. Sussman, “Statistical
inference on random dot product graphs: a survey,” Journal of Machine
Learning Research, vol. 18, no. 226, pp. 1-92, 2018.

K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-
dimensional stochastic blockmodel,” Annals of Statistics, vol. 39, no. 4,
pp. 1878-1915, 2011.

I. Gallagher, A. Jones, A. Bertiger, C. E. Priebe, and P. Rubin-Delanchy,
“Spectral clustering of weighted graphs,” Journal of the American
Statistical Association, 2023.

M. Tang, D. L. Sussman, and C. E. Priebe, “Universally consistent vertex
classification for latent positions graphs,” Annals of Statistics, vol. 41,
no. 3, pp. 1406-1430, 2013.

K. Mehta, R. Goldin, D. Marchette, J. T. Vogelstein, C. E. Priebe, and
G. A. Ascoli, “Neuronal classification from network connectivity via
adjacency spectral embedding,” Network Neuroscience, vol. 5, no. 3,
pp. 689-710, 2021.

J. Arroyo, A. Athreya, J. Cape, G. Chen, C. E. Priebe, and J. T.
Vogelstein, “Inference for multiple heterogeneous networks with a
common invariant subspace,” Journal of Machine Learning Research,
vol. 22, no. 142, pp. 1-49, 2021.

I. Gallagher, A. Jones, and P. Rubin-Delanchy, “Spectral embedding
for dynamic networks with stability guarantees,” in Advances in Neural
Information Processing Systems, pp. 10158-10170, 2021.

C. Shen, Q. Wang, and C. E. Priebe, “One-hot graph encoder embed-
ding,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 6, pp. 7933 — 7938, 2023.

C. Shen, C. E. Priebe, J. Larson, and H. Trinh, “Synergistic graph fusion
via encoder embedding,” Information Sciences, vol. 678, p. 120912,
2024.

C. Shen, J. Larson, H. Trinh, X. Qin, Y. Park, and C. E. Priebe, “Dis-
covering communication pattern shifts in large-scale labeled networks
using encoder embedding and vertex dynamics,” IEEE Transactions on
Network Science and Engineering, vol. 11, no. 2, pp. 2100 — 2109, 2024.
C. Shen, “Encoder embedding for general graph and node classification,”
Applied Network Science, vol. 9, p. 66, 2024.



VERTEX CLASSIFICATION ERROR USING 5-FOLD LINEAR DISCRIMINANT ANALYSIS ON EACH GRAPH EMBEDDING. THE TABLE REPORTS THE AVERAGE
ERROR AND STANDARD DEVIATION AFTER 100 MONTE CARLO REPLICATES, HIGHLIGHTING THE BEST ERROR WITHIN EACH DATASET. ALL ACCURACY

(n, K) GEE (%) | P-GEE (%) | |D| || ASE (%) | N2V (%)
Citeseer | (3312,6) || 328406 | 323+£06 | 4 || 60.3+05 | 77.5+£05
Cora (2708,7) || 209+1.5 | 209+15 | 5 || 31.8406 | 75.1+05
Email | (1005,42) || 34.1£0.8 | 3424208 | 39 | 43.6+04 | 292+0.5
1013 (219, 3) 317419 | 327217 | 2 | 356+04 | 489£3.2
IMDB | (19503,3) || 1.4+29 | 14+29 60.1+£0.4 | 44.84£0.1
LastFM | (7624,18) || 20.3+£0.3 | 20.3+£0.3 | 17 || 433404 | 147+0.1
Letter | (10507,15) || 7.4+0.3 | 744+03 | 4 | 892403 | 74.9+0.3
Phone | (1703,71) || 30.1+0.8 | 28.6+0.8 | 53 || 559402 | 83.7+05
Protein | (43471,3) || 308+0.2 | 308402 | 3 | 51.0+0.7 | 45.8+0.1
Pubmed | (19717,3) || 226+£0.2 | 226+£02 | 3 || 355407 | 58.9+£0.2
TABLE I

ARE IN PERCENTILE.

GEE (%) | Time (s) | P-GEE (%) | Time (s) | (K, |D|) ASE (%) | Time (s)
Citeseer || 49.9+£0.6 | 0.11 415405 0.09 (6,6) 72.9+0.3 0.16
Cora 42.64+0.6 | 0.12 29.4+0.5 0.11 (7,7) 61.84+0.4 0.15
Email || 50.5+0.8 0.38 51.2+0.9 0.37 (42,60) || 50.8+0.5 0.42
P 42.84+2.0 | 0.02 3924 2.0 0.02 (3,2) 52.3 +£2.2 0.03
IMDB || 28.3+04 | 0.17 102+0.05 | 0.13 (3,3) 69.0+0.06 | 0.75
LastFM || 42.1+04 | 0.22 304+0.3 0.19 (18,17) || 53.0+0.2 5.9
Letter || 29.74+0.3 | 0.20 21.140.3 0.18 (15,15) || 90.8 +0.03 1.1
Phone || 48.8+1.0 | 0.75 41.3+0.9 0.67 (71,53) || 64.1+0.3 0.70
Protein || 42.5+0.2 | 0.30 383+0.2 0.17 (3,3) 56.6 + 0.02 2.4
Pubmed || 39.0+0.3 | 0.16 3234+0.2 0.12 (3,3) 449405 0.48
TABLE II

THE EVALUATION IS THE SAME AS IN TABLE I, EXCEPT THAT 10% OF THE GIVEN LABELS ARE RANDOMIZED INTO ONE OF 30 NOISE GROUPS. WE ALSO
REPORT THE AVERAGE RUNNING TIME. THE BEST ERROR WITHIN THE NOISE COLUMNS IS HIGHLIGHTED. ALL ACCURACY ARE PRESENTED AS
PERCENTAGES, AND ALL RUNNING TIMES ARE IN SECONDS.
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Fig. 2. This figure displays the average sample community score, the average principal community detection accuracy, and the average vertex classification
error using the embedding, based on 100 Monte-Carlo replicates with increasing n. P-GEE denotes the principal graph encoder embedding, and GEE denotes

the original graph encoder embedding.



APPENDIX

To facilitate the proof, we introduce the following notations for conditioning and density arguments:

o We use \ZJ to denote the conditioning on all the independent variables Uj, i.e., for j = 1,2,...,m, we fix U; = u;.

» When conditioning on (X,Y") = (x,y), we simply use -|(X,Y).

o We assume (U, V) is an independent copy of (X,Y"). Moreover, when conditioning on (U, V) = (u,v), we simply use

(U, V).

e (a1,as,...,ay,) denotes the density argument for each dimension of A, and (21, 29, . . ., 2k ) denotes the density argument

for each dimension of Z.

Theorem 1. Given A ~ RBG(X, 17, 0), the principal graph encoder embedding preserves the following conditional density:

YA y|z Z y|ZP.
Denote L*(Y, A) as the Bayes optimal error to classify Y using A, we have
L*(Y,A) = L*(Y,Z) = L*(Y, Z").

Proof. The proof is decomposed into three parts:
« (i) establish YA ' v|Z;
« (ii) establish Y|Z 2" y|ZP;

« (iii) establish the Bayes error equivalence.

(i) It suffices to show the following always holds:

Prob(Y'|A) = Prob(Y'|Z)

where Z = AW is the encoder embedding. Given that Y is a categorical variable with prior probabilities {7, k =1, .

each conditional probability satisfies

T =y\a1,a2;...,0m
Prob(Y = y|A) = KyfA\ny( 1,02 ) ’
Yo mifayy=i(ar, az,. .., am)
U =y Z1,%22,---,%
Prob(Y = y|Z) = K?/fZ|Y—y( 1,22 K) .
21:1 7Tle|Y:z(z1,22,...,zK)

Therefore, it suffices to prove that the two numerators are proportional, i.e.,

cX fA\Y(alaaQa"wa‘m) = fZ|Y(Zl7Z27"-aZK)

for some positive constant c that is unrelated to Y.

We begin by examining the conditional density of A:

m

fA\(Y,X,Z/_i) (ala a2, ..., afm) = H 5(337 uj)aj (1 - 5(3;7 uj))l_aj
j=1

K ’Uj:k
= H H §(zyui) (1 — 8w, uz))t Y.
k=13=1,..., m

"7K}7

The first line follows because each dimension of A, under all the conditioning, is independently distributed as a Bernoulli
random variable with probability §(x,u;) for j = 1,...,m. Then the second line rearranges the product based on the class

membership of each v;.



We proceed by un-conditioning with respect to u, resulting in the following expression:
fA|(Y,X)(a17a27 e ) = ﬁfA‘(y_X7g)(a1a Sy am)fzj(uly ey )
i :

:/ fA‘(Y’X’Z,?)(ala'"7a’m)fU1(u1)"'fUm(um)
ULyeeoyUm
vj=k

:/ H H §(zyuy) (1 — 0w, ui))' Y fuv=v (U1) - fov=v,, (Um)

ULy HUm =1 j=1,.

K vj=k

=11 E(3(z,U)|[V = k)% (1 = E(3(x, U)|V = k))'~
k=1j=1,....m
K » Uji a; ) B3 (17&_7‘)

= [T @)y =m ™ (= g g (U =i

The first line is a standard application of conditional density manipulation, and note that U is independent of (X,Y"). The second
line rewrites the joint density of f; into individual densities, since the joint density is simply a product of fi7y—,, (u;). The
fourth line computes the integral: since u; only appears once in the whole product, either via 6(x, u;)% or (1 —d(x,u;))' ~%
due to a; taking values of either 0 or 1, solving the integral at each j yields either E(d(z,u;)) or (1 — E(d(z,u;))). Since
this expectation is identical throughout the same v;, we can represent this expectation as:

T (U) = E(0(x,U)|V = k).

This allows us to group terms with the same expectation together based on k.
Continuing with the derivation, we un-condition X to derive f4)y:

fA|Y(alva27~-~aam):/fA\(Y,X)(alya%-~-aam)fX\Y(x)

vi=k vi=k

K J J
> a; X (-ay)
= [ @)= @ = ras@p= ™ gy @),
T k=1
Next, we consider the encoder embedding Z. Starting from f 21y, X.20) (#1,22,...,2K ), under such conditioning, the density

at each dimension £ is a Poisson Binomial distribution, i.e.,
miZi| (Y, X,U) ~ Poisson Binomial({3(z, u;)})

for j = 1,...,m and v; = k. After un-conditioning U, each probability 0(z,u;) again becomes E(d(x,U)|V = k) by the
same reasoning as above for f4(y,x). Therefore,

myZ|(Y, X) ~ Binomial(my, 7, 1 (U)).
As each dimension is conditionally independent, the density of Z is the product of independent Binomials, and we have
K m
k mrz My —ME 2
faivixo (a2, 2) = k]_Il (mk%)m,kw» S (L = g (U))TTE

and

fziy (21,22, -, 2K) :/fZ\(Y,X)(ZhZQa-~-aZK)fX|Y(x)

/Tk : (mkzk) ek (U))" (1 = 7 1 (U)) ™7™ fxy ()

B H <m)/ ﬁ e (L))" 54 (1= 7 (D)) Ly ()

where the third line follows because (my, zx) are not affected by the integration of x.
Observe that the encoder embedding enforces myz; = Z;flkm a; for each k. Comparing fz|y to fajy, we immediately
have

ex fay(ar,az,...,am) = fzy (21,22, ., 2K)



when Z = AW, where c = [[;_, (™ ) is a positive constant.

This conditional density equality holds regardless of the underlying (X, V) or (-, -). Hence, we have Y |A dist Y|Z for the

encoder embedding.

(il) Without loss of generality, let us assume that D = {1,2,...,d}, and d € [1, K). This means the first d communities
are the principal communities, and the remaining are redundant communities. The trivial cases that d = 0 or d = K will be
addressed at the end

Recall the expression from part (i) above:

K K
Foiv (21,20, 2k) = M (Tae(U))™2 (1 — 14 (U)) ™= ™570 foo ().
Z|Y 2 K _1< )/I;}:[l k k X|Y

This leads to:

Ty fziy=y(21, 22, .. ., 2K)
Z{il 7Tle|Y 1(31,2‘2,-- ZK)
Tl Gs) o T (o g (U)) ™54 (1 = 7 (U) ™7™ fxpy—y ()
S mITe (o) S TR (e e (O)) 5 (1 = g (U)) = me=s fc ey ()
T (T (U)) ™53 (1 = 7 (U)) ™ 7055 fyy ()
O S T (e ()2 (1= o (U)o fpy— ()

Prob(Y = y|Z) =

where
Tx,k(U) = E((S(JC, Uk))

We first look at the terms from community K, which is assumed the redundant community. From the definition of redundant
community, we have

7o,k (U) = BE(3(2,U")) = ek

for all possible x where fx(x) > 0, where ck is a constant unrelated to . Consequently, all terms involving 7, x (U) can
be taken outside of the integral in both numerator and denominator, and the same holds for terms associated with 7, 1 (U) for
each k =d+1,...,K. In essence, for any [ € [1, K], we always have

m H (Te ke (U))™5#* (1 = 1 1 (U)) ™70 fx)y =i ()

“‘k 1
H kazk 1_Clc mk mkzk 7Tl/ H Tm,k(U))Tnka(l_T:DJC(U))"Lk_mekfX|Y:l(-/E)-
k=d+1 T r=1
It follows that
d Mgz mip—mpgz

K d )
21:1 0 [, Ty (e ke (U)o (1 = 7 o (U) )n =02k fixy—y ()
which exclusively pertains to dimensions corresponding to the principal communities. It is evident that:

Prob(Y = y|ZP) = Prob(Y = y|Z) = Prob(Y = y|A)
Hence, the principal graph encoder embedding satisfies Y|A "= das Y|ZP.
Regarding the two trivial cases: when d = K, implying that all communities are principal communities, the theorem trivially

holds since no additional dimension reduction occurs. When d = 0, there is no principal community and D is empty. In this
scenario, we have

Prob(Y = y|A) = Prob(Y = y|Z) = my, = Prob(Y = y),

indicating that A and Y are independent, and Z and Y are independent as well. In other words, the graph provides no
information for predicting Y, so the graph data itself is redundant.

(iii) Given two random variables (X,Y") where Y is categorical, the Bayes optimal classifier for using X to predict YV is

g(X) = arg k:nl{:?(’KProb(Y =k|X).



By the conditional density equivalence in parts (i) and (ii), it is immediate that the Bayes optimal classifier for using A to
predict Y satisfies

g(A) = arg max Prob(Y =k | A)
= argml?xProb(Y =k|Z)=y9(2)
= argm?xProb(Y =k| ZP) = g(ZP).
Therefore, the Bayes optimal classifier for predicting Y is the same, regardless of whether the underlying random variable is
A, Z, or ZP. Since the optimal classifier is always the same, the resulting optimal error is also the same. ]

Theorem 2. Assume A ~ RBG(X,V), and §(X,U*)|Y is independent of X|Y, which is satisfied under the stochastic block
model. Then the population community score A(k) = 0 if and only if community k is a redundant community.

Proof. (i) We first prove that the required condition, §(X,U*)|Y being independent of X|Y, can be satisfied under the
stochastic block model (SBM).
Recall that the standard stochastic block model satisfies:

A(i,j) ~ Bernoulli( B(Y (i), Y(4))),
which, when cast into the framework of a random Bernoulli graph, is equivalent to:
S(X, UMY =y) = B(y, k),

where B(y, k) is a constant and, therefore, always independent of X |(Y = y).
This condition can also hold under the more general degree-corrected stochastic block model (DC-SBM), with an additional
assumption regarding how the degree parameters are generated. Under DC-SBM, we have:

S(X, UMY =y) = 00'B(y, k),

where 0 and ¢ are the degrees for X and UF, respectively. Clearly, &’ B(y, k) is independent of X|(Y = y). By further
assuming that the degree variable ¢ is generated independently of X|(Y = y), 6(X,U*)|(Y = y) becomes independent of
X|(Y = y) under DC-SBM.

(i) Next, we prove that under the condition that §(X, U*)|Y is independent of X |Y’, the population community score (k)
equals 0 if and only if community % is a redundant community.

From the definition of principal community and the population community score, we need to prove two things. First, we
shall prove that

Var (E(5(X,UF) | X)) =0
if and only if
Var(E(Zy|Y =1)) =0.

This is because when the above conditional variance equals 0, F(Z;|Y =1) is a constant across different [, which makes the
numerator of the population community score always 0.
From the proof of Theorem 1, we have:

mpZp|(Y =1, X = x) ~ Binomial(my, E(6(z, U"))).
From this, we can derive the conditional expectations as follows:
B(Zi|(Y, X = z)) = E(3(x,U")),
E(Zy|Y =1) = BE(5(X, UMY =1).
When community £ is redundant such that
Var(E(5(X,U")|X)) =0,
we immediately have
Var(E(Zy|Y =1)) = Var(E(6(X,U*)|Y =1)) = 0.

This is because when the conditional variance equals O for all possible X, it must also be 0 when conditioning on Y = [,
which restricts to part of the support of X. This proves the only if direction.

To prove the if direction, we need the additional assumption that (X, U*)|Y is independent of X |Y". Given such conditional
independence, and the fact that Z;|Y is a random variable with parameter m, and E(5(X,U¥)), we immediately have that Z.|Y’



is independent of X|Y, which implies E(Z;|Y =1) = E(Z|(Y =1, X)). Therefore, when Var(E(Z;|Y =1)) = 0, we also
have Var(E(Zy|(Y =1,X))) = 0. Since E(Z|(Y =1,X = z)) = E(6(z,U*)) = E(§(X,U*)|X = z), which intuitively
means that conditioning on Y is redundant once X is known, this leads to Var(E(Z;| X)) = Var(E(§(X,U")| X)) = 0.
(iii) Part (ii) proved that the numerator of the population community score equals O if and only if community % is a redundant
community. To complete the proof, it remains to show that the denominator of the population community score is greater than
0; otherwise, a 0/0 problem could arise when community % is redundant.
Based on the binomial distribution of Zj, we have:

E(0(x,U"))(1 = E((x,U")))

my

Var(Z|(Y, X)) =

> 0,

which always holds, regardless of whether k is redundant or not, except in the trivial case where §(x, U¥) = 0 or 1 almost
surely. This corresponds to the scenario where the graph adjacency matrix is entirely Os or 1s, making all communities redundant
and reducing vertex classification to random guessing. Excluding such trivial cases, we have:

VGT(Z;C‘Y = l) = Ex(VaT(ZkKY,X))) + VarX(E(Zk|(Y,X))) > 0,

where the first term is positive, and the second term is non-negative.
Thus, excluding trivial graphs, the denominator of the principal community score is always positive, regardless of whether
community k is redundant or principal. O



