--- title: "Synaptome Statistics: July 2017 Notes" date: '`r Sys.Date()`' output: html_document: fig_caption: yes fig_height: 5 fig_width: 5 highlight: pygments number_sections: yes theme: cerulean toc: yes toc_depth: 3 --- ```{r knitOPTS, include=FALSE} knitr::opts_chunk$set(cache = TRUE, dev = "png") ``` ```{r render, eval=FALSE, echo=FALSE} require(rmarkdown) rm(list=ls()); rmarkdown::render("Notes201707.Rmd") system("open Notes201707.html") ``` ```{r setup,include=FALSE,results='asis',message=FALSE,warning=FALSE, echo = FALSE} ### Library calls here. require(rmarkdown) require(knitr) suppressMessages(require(meda)) ``` # Weiler14 Ex2R18C1 Putative synapse locations were obtained by Anish Simhal. Around each synapse across each channel the sum of pixel intensities within an 11x11x11 cube are calculated to produce a feature vector. These feature vectors are combined into a data matrix. We replace the DAPI channels with their first principal component. The data matrix is then z-scored before running it through [meda](https://github.com/neurodata-dev/meda). We did this for samples of size 1,000 and 10,000. ## Sample size 1,000 ### 1-d Heatmap ![](weiler1k/output1k/plots/2.png) ### Location plots ![](weiler1k/output1k/plots/raw5.png) ### Outliers as given by randomForest ![](weiler1k/output1k/plots/6.png) ### Correlation Matrix ![](weiler1k/output1k/plots/4.png) ### Cumulative Variance with Elbows ![](weiler1k/output1k/plots/1.png) ### Paired Hex-binned plot ![](weiler1k/output1k/plots/7.png) ### Hierarchical GMM Classifications ![](weiler1k/output1k/plots/3.png) ### Hierarchical GMM Dendrogram ![](weiler1k/output1k/plots/dend.png) ### Stacked Cluster Means plot ```{r stackM, include = FALSE, eval=FALSE} suppressPackageStartupMessages(require(meda)) h <- readRDS("weiler1k/output1k/hmc.rds") png("weiler1k/output1k/plots/stackMM.png", height = 1800, width = 800) plot(stackM(h, ccol = h$ccol, centered = TRUE)) dev.off() ``` ![](weiler1k/output1k/plots/stackM.png) ### Cluster Means ![](weiler1k/output1k/plots/clusterMeans.png) ## Sample size 10,000 ### 1-d Heatmap ![](weiler10k/output10k/plots/2.png) ### Location plots ![](weiler10k/output10k/plots/raw5.png) ### Outliers as given by randomForest ![](weiler10k/output10k/plots/6.png) ### Correlation Matrix ![](weiler10k/output10k/plots/4.png) ### Cumulative Variance with Elbows ![](weiler10k/output10k/plots/1.png) ### Paired Hex-binned plot ![](weiler10k/output10k/plots/7.png) ### Hierarchical GMM Classifications ![](weiler10k/output10k/plots/3.png) ### Hierarchical GMM Dendrogram ![](weiler10k/output10k/plots/dend.png) ### Stacked Cluster Means plot ```{r stackM10k, include = FALSE, eval = FALSE} suppressPackageStartupMessages(require(meda)) h <- readRDS("weiler10k/output10k/hmc.rds") png("weiler10k/output10k/plots/stackMM.png", height = 1800, width = 800) plot(stackM(h, ccol = h$ccol, centered = TRUE)) dev.off() ``` ![](weiler10k/output10k/plots/stackM.png) ### Cluster Means ![](weiler10k/output10k/plots/clusterMeans.png) --- ---