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ABSTRACT

This paper deals with designing incoherent sparsifying dic-
tionaries. A new framework is proposed, in which the sparse
representation error and mutual coherence are embedded. An
alternating minimization method is developed for solving the
optimal dictionary problem. One of the significant features
of the proposed approach is that the dictionary is directly up-
dated with each atom being normalized. A gradient-based
algorithm is derived for this purpose. Experiments are car-
ried out and the results show that the proposed approach out-
performs some prevailing ones in terms of minimizing sparse
representation error and mutual coherence.

Index Terms— Dictionary learning, equiangular tight
frame, incoherent dictionary, sparse representation

1. INTRODUCTION

Sparse and redundant representations look for the best ap-
proximation of a signal vector with a linear combination of
few atoms from an over-complete set of well-designed vec-
tors [1]. This topic is closely related to the sparsifying dictio-
nary learning [2], [3] and the compressed sensing (CS) [4] -
[6], in which the sparsity of the signals to be recovered is a
prerequisite.

The lp-norm of v ∈ ℜN×1 is defined as 1

||v||p
△
= (

N∑
n=1

|v(n)|p)1/p, p ≥ 1. (1)

For convenience, ||v||0 is used to denote the number of non-
zero elements in v. Let y ∈ ℜN×1 be the signal under con-
sideration and assume

y =

L∑
l=1

slψl
△
= Ψs (2)
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1Throughout this paper, MATLAB notations are adopted: v(n) denotes
the nth entry of the vector v; Q(m, :), Q(:, k) and Q(i, j) respectively de-
note the mth row, kth column, and (i, j)th entry of the matrix Q.

where Ψ ∈ ℜN×L is usually called a dictionary and is said
over-complete if N < L and s is the coefficient vector. Such
a model, referred to as synthesis model, has been vastly used
in many applications such as denoising and compression.

The optimal vector s for a given y is determined with

s = argmin
s̃

||y −Ψs̃||22 s.t. ||s̃||0 ≤ κ (3)

where the dictionary Ψ is assumed to be given and κ is a
prescribed sparsity level. The problem defined in (3) can be
solved using the orthogonal matching pursuit (OMP) [7]-[9].

Let Y =
[
y1 · · · ym · · · yJ

]
∈ ℜN×J be the

data matrix formed by a collection of J observed signal vec-
tors. The traditional sparsifying dictionary learning can be
stated mathematically as (Ψ, S)

△
= arg min

Ψ̃∈ℜN×L,S̃∈ℜL×J

||Y − Ψ̃S̃||2F

s.t. ||S̃(:,m)||0 ≤ κ, ∀m
(4)

where ||.||F denotes the Frobenius norm.
By nature, sparsifying dictionary learning is a matrix fac-

torization problem [10]-[12]: Y ≈ ΨS. There exists an infi-
nite number of solutions to (4). No analytical solutions have
been found so far and given that (4) is highly non-convex, a
practical approach used to attack such a problem is the alter-
nating minimization strategy [13], leading to a class of al-
gorithms [14] - [17] such as the method of optimal direc-
tion (MOD) [14] and the K-singular value decomposition (K-
SVD) [15].

The approaches mentioned above focus on minimizing the
sparse representation error ∥Y − Ψ̃S̃∥2F . The concept of mu-
tual coherence of matrix A, denoted as µ(A), plays an impor-
tant role in numerical analysis. On the one hand, it was shown
in [18] that a dictionary Ψ has well conditioned sub-matrices
formed with columns of Ψ when µ(Ψ) is small. On the other
hand, as shown in [2], [7], any κ-sparse coefficient vector s0
can be exactly recovered from the observation/measurement
y = Ψs0 via (3) as long as

κ <
1

2
[1 +

1

µ(Ψ)
]. (5)



(5) suggests that a dictionary with small mutual coherence
can enlarge the signal space in which the coefficient vector
s can be achieved exactly. Therefore, it is desired to design
the dictionary with mutual coherence taken into account. This
leads to the so-call incoherent sparsifying dictinary learning
(ISDL). Recently, an alternative formulation was proposed
for ISDL in [19], where the two-stage alternating minimiza-
tion approach is adopted, consisting of the sparse coding fol-
lowed by a dictionary update. To the latter, two separated
steps are employed: i) atoms decorrelation; ii) dictionary ro-
tation. More details of this approach will be given in the next
section.

Note that in the approach proposed in [19] the atoms
decorrelation and minimization of sparse representation error
are performed independently as they are under two different
frameworks, making the algorithm converge slowly or may
even diverge. Besides, simulations showed that such an ap-
proach leads to a quite large sparse representation error due to
too much emphasis made on the mutual coherence reduction.
In this paper, we propose a new framework for ISDL, under
which both sparse representation error and mutual coherence
of the dictionary are embedded in the same cost function.
An algorithm for solving the optimal dictionary design is
derived with guaranteed convergence. Simulations show that
the dictionary obtained using the proposed approach outper-
forms those by the traditional MOD and K-SVD as well as
the method proposed in [19] in terms of reducing mutual
coherence and sparse representation error.

2. PROBLEM FORMULATION

The mutual coherence of a matrix A ∈ ℜN×L is defined as

µ(A)
△
= max

1≤i ̸=j≤L
{ |A(:, i)T A(:, j)|
∥A(:, i)∥2∥A(:, j)∥2

} (6)

where T represents the transpose. Roughly speaking, µ(A)
measures the maximum linear dependency possibly achieved
by any two columns of matrixA and it can be shown [20] that

µ
△
=

√
L−N

N(L− 1)
≤ µ(A) ≤ 1 (7)

where µ is the Welch bound of matrix A.
Let A be a unit-norm frame (i.e., ||A(:, l)||2 = 1, ∀ l).

Such a frame is said equiangular if |A(:, l)T A(:, j)| =
c, ∀ l ̸= j, where c is some positive constant. An equiangular
tight frame (ETF) is a unit-norm frame which is tight and
equiangular [20]. Furthermore, a unit-norm frameA achieves
µ(A) = µ if and only if A is an ETF [20].

Based on the fact that an ETF achieves the minimal mu-
tual coherence, the optimal ISDL was formulated in [19] as
(4) but with an extra constraint µ(Ψ̃) ≤ µ0, where µ0 ≥ µ is
a fixed target mutual coherence level and such a problem was

addressed in [19] with the algorithm outlined below:

AlgIPR
Ψ - ISDL using iterative projections and rotations

Initialization: Set the training data matrix Y , the number of
iterations Nite and the parameter µ0; Initiate Ψ̃ with a ran-
domly generated Ψ0 ∈ ℜN×L.

Begin: k = 1, 2 · · · , Nite

• Step I: Sparse coding - to update S via{
Sk

△
= arg minS̃ ||Y −Ψk−1S̃||2F
s.t. ||S̃(:,m)||0 ≤ κ, ∀m

(8)

which can be solved by a greedy algorithm like OMP.

• Step II: Dictionary update - to update Ψ via

Ψ̃k
△
= arg min

Ψ̃∈ℜN×L
||Y − Ψ̃Sk||2F .

• Step III: Atoms decorrelation using

Ψ̂k
△
= arg min

Ψ̃∈ℜN×L
||H̃ − Ψ̃T Ψ̃||2F (9)

subject to H̃ = argminH∈Setf
H

||H − Ψ̃T
k Ψ̃k||2F with

Setf
H being the set of relaxed ETF Grams:

Setf
H

△
= {H ∈ ℜL×L : H = HT , H(l, l) = 1, ∀ l

max
i ̸=j

|H(i, j)| ≤ ξ}. (10)

• Step VI: Dictionary rotation to complete the dictionary
update with Ψk = V Ψ̂k, where

V
△
= argmin

Ṽ
||Y −Ṽ Ψ̂kSk||2F s.t. Ṽ T Ṽ = IN . (11)

End
Outputs: Ψ = ΨNite and S = SNite .

As mentioned in the previous section, AlgIPR
Ψ has some

weak points. The main problem in this algorithm is that the
atoms decorrelation and sparse representation error reduction
are not considered in the same framework. This motivates us
to consider an alternative approach in which the cost function
takes the two into account in the same framework.

3. AN ALTERNATIVE FRAMEWORK FOR ISDL

The problem we encounter here is actually to design such a
dictionary Ψ that yields a small sparse representation error
and has its atoms incoherent. To deal with such a multi-target
problem, we consider the following measure for ISDL:

ϱ(Ψ, S,H)
△
= (1− β)||Y −ΨS||2F

+β||H −ΨT Ψ||2F (12)

where H ∈ Setf
H and 0 ≤ β ≤ 1 is a weighting factor to

balance the importance of the two terms.



The corresponding optimal ISDL is then formulated as

(Ψ, S,H)
△
= arg min

Ψ̃,S̃,H̃
ϱ(Ψ̃, S̃, H̃)

s.t. H̃ ∈ Setf
H , ||S̃(:,m)||0 ≤ κ, ∀m

||Ψ̃(:, l)||2 = 1, ∀ l. (13)

Remark 3.1: It should be pointed out that the l2-based nor-
malization in (13) is used for the term ||H − ΨT Ψ||2F to
have the intended physical meaning of coherence difference
between the target Gram and that of the dictionary.

Now, let us consider the optimal dictionary design prob-
lem (13). As realized, ϱ(Φ̃, S̃, H̃) is a highly non-convex
function of Φ̃, S̃, and H̃ . To address such a problem, we pro-
pose the following alternating minimization-based algorithm
that has been popularly adopted in sparse dictionary learning:

AlgGSD
Ψ - Gradient-based ISDL

Initialization: With a normalized dictionary Ψ0 randomly
generated, set a prescribed iteration number Nite.

Begin For k = 1 : Nite

• Step I: With Ψ̃ = Ψk−1, update H with the solution of
(13) which is equivalent to

Hk
△
= argmin

H̃
||H̃ −Gk−1||2F s.t H̃ ∈ Setf

H

where Gk−1
△
= ΨT

k−1Ψk−1. The solution to the above
is obtained by applying the following shrinkage opera-
tion [13] to Gk−1:

Hk(i, j) =

{
τ, i ̸= j, |τ | ≤ ξ
sign(τ)ξ, i ̸= j, |τ | ≥ ξ

(14)

where τ = Gk−1(i, j), sign(.) is the sign function, and
ξ is the parameter characterizing the space of relaxed
ETF Grams via (10).

• Step II: With Ψ̃ = Ψk−1 and the obtained H = Hk, S
is updated with the solution of (13), which is actually
equivalent to the standard sparse coding (8).

• Step III: With Hk and Sk obtained above, update the
dictionary Ψ with Ψk, the solution of

min
Ψ̃

ϱ(Ψ̃, Sk, Hk) s.t. ||Ψ̃(:, l)||2 = 1, ∀ l. (15)

End For loop
Output: Ψ = ΨNite .

Here, we present an approach to attack (15). The key to
the success of this approach is the following parametrization
of the dictionary

Ψ̃ = XDX (16)

where DX
△
= diag(d1, · · · , dl, · · · , dL) with

DX(l, l) = dl
△
= ||X(:, l)||−1

2 , ∀ l. (17)

Clearly, the columns of such Ψ̃ are inherently l2-normalized
as long as X has no zero columns. It then follows from (16)
- (17) that the problem of updating dictionary using (15) is
converted to a unconstraint minimization of form

Xopt
△
= argmin

X
ϱ(XDX , S̃, H̃) (18)

where S̃ = Sk, H̃ = Hk.
The problem defined by (18) can then be addressed using

the following iterative procedure:

Xn = Xn−1 − λ
∂ϱ

∂X
|X=Xn−1 (19)

where λ > 0 is the step-size and with an initial X0 ∈ ℜN×L

(of no zero-columns) given, say the X0 such that Ψk−1 =
X0DX0 , run (19) and limn→+∞Xn yields an estimate of
Xopt. Clearly, the updated dictionary at the kth iteration of
AlgGSD

Ψ is given by Ψk = XoptDXopt .
The expression for ∂ϱ

∂X has been derived and will not be
presented due to the limited space.

Remark 3.2: As the OMP can yield a solution almost equal
to the true one of (8) and the gradient-based algorithm can en-
sure a solution Ψk better than Ψk−1 even if it may be different
from the one defined by (15), the proposed algorithm can en-
sure ϱ(Ψk, Sk,Hk) ≤ ϱ(Ψk−1, Sk−1,Hk−1) and hence the
convergence of the iterative procedure is guaranteed given
that the cost function is positive. So, our proposed algorithm
is numerically much more stable than that in [19]. More inter-
esting features of this algorithm will be demonstrated in the
next section.

4. SIMULATION RESULTS

The setup is as follows. We generate a dictionary Ψ ∈ ℜ30×60

randomly, then {y∗m}4000m=1 with each y∗m being sparse with
κ = 4 in Ψ and ||y∗m||2 = 1. The actual signal ym is given by
ym = y∗m+ ϵm, ∀m, where ϵm is an additive Gaussian noise
with standard variance σ. This setting is the same as used in
[1]. Note that µ =

√
1/59 = 0.1302 and µ(Ψ) = 0.55.

We compare our proposed AlgGSD
Ψ with AlgMOD

Ψ [14],
AlgKSVD

Ψ [15], and AlgIPR
Ψ [19] in terms of average repre-

sentation error Ek
△
= ∥Y −ΨkSk∥F /

√
JN , percentage of re-

covered atoms r(Ψk) to be defined below, mutual coherence,
and average mutual coherence µ̄av(Ψk), defined as

µ̄av(Ψk)
△
=

√
||IL − Ψ̄T

k Ψ̄k||2F
L(L− 1)



where Ψ̄k is the normalized version of Ψk. We say an atom
Ψ(:, l) in the true dictionary Ψ is recovered in Ψk if

min
n

(1− |Ψk(:, n)
T Ψ(:, l)|) < 0.01. (20)

Denote Lk as the number of recovered atoms in Ψk. The per-

centage of the recovered atoms is defined as r(Ψk)
△
= Lk/L.

We perform 30 iterations of (19) for solving (15) in
AlgGSD

Ψ . In the legends of Fig.s 1,2, we refer to the algo-
rithms AlgGSD

Ψ AlgMOD
Ψ , AlgKSVD

Ψ , and AlgIPR
Ψ as GSD,

MOD, KSVD and IPR, respectively.
Fig. 1 shows the performance of each of AlgGSD

Ψ , AlgIPR
Ψ ,

AlgKSVD
Ψ and AlgMOD

Ψ with σ = 0.1 and for different val-
ues of ξ (that is used in AlgGSD

Ψ and AlgIPR
Ψ ). While Fig. 2

presents the same things but for σ = 0.
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Fig. 1. Evolution of the four indicators: (a) - Ek; (b) -
µ̄av(Ψk); (c) - r(Ψk); (d) - µ(Ψk). Here σ = 0.1 and
ξ = µ, µ(Ψ) for both AlgGSD

Ψ and AlgIPR
Ψ .

Remark 4.1

• As observed from Figs. 1,2(a-b), the indicators Ek and
µ̄av(Ψk) decay steadily for AlgGSD

Ψ , which implies the
convergence of our proposed algorithm. In AlgGSD

Ψ ,
there is a tradeoff between sparse representation error
and mutual coherence. By choosing β, we can balance
this tradeoff depending on the particular application. In
the experiments, for ξ = µ, we set β = 0.8 when σ = 0
and β = 0.9 when σ = 0.1.

• As seen, our AlgGSD
Ψ outperforms the others in terms

of Ek and r(Ψk) when there exists an additive noise,
while when the signal is purely sparse (i.e., σ = 0),
AlgKSVD

Ψ and AlgGSD
Ψ yield the best performance in

terms of these two indicators.
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Fig. 2. Evolution of the four indicators: (a) - Ek; (b) -
µ̄av(Ψk); (c) - r(Ψk); (d) - µ(Ψk). Here σ = 0 and
ξ = µ, µ(Ψ) for both AlgGSD

Ψ and AlgIPR
Ψ .

• It should be pointed out that in the KSVD code we use,
a new atom will be generated randomly to replace the
present one if the latter has coherence larger than 0.99
with another atom. The sharp change caused by this ac-
tion can be observed from Fig 2(d). This step is enough
for KSVD (but not enough for MOD algorithm) to es-
cape the coherent solution in the noiseless case.

• It is interesting to note that no matter there is an addi-
tive noise or not, AlgIPR

Ψ performs poorly when ξ is
set to a small value. This is suspected due to the fact
that much effort has to be made to reduce the mutual
coherence and hence no much room left for reducing
the sparse representation error. We can observe when
ξ is set to be close to µ(Ψ), which is practically not
available, AlgIPR

Ψ yields a better performance, while
our AlgGSD

Ψ always has better results than AlgIPR
Ψ does

when we just choose ξ = µ.

5. CONCLUSIONS

A novel framework has been proposed for ISDL and an al-
ternative minimization-based algorithm has been derived for
solving the optimal dictionary design. Experiments have
shown that the proposed approach outperforms the prevailing
ones for ISDL.

In the proposed algorithm, the dictionary update is done
using a gradient-based method. More efficient algorithms are
needed for speeding up the convergence and further enhanc-
ing the performance of the dictionary.
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