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Abstract—Traditionally, the projection matrix in compressive
sensing (CS) is chosen as a random matrix. In recent years, we
have seen that the performance of CS systems can be improved
by using a carefully designed projection matrix rather than a
random one. In particular, we can reduce the coherence between
the columns of the equivalent dictionary thanks to a well-designed
projection matrix. Then, we can get a lower reconstruction
error and a higher successful reconstruction rate. In some
applications, the signals of interest have nonzero entries occurring
in clusters — i.e., block-sparse signals. In this paper, we use the
equiangular tight frame (ETF) to approach the Gram matrix of
equivalent dictionary rather than the identity matrix used in [1].
Then, we minimize a weighted sum of the subblock coherence
and the interblock coherence of the equivalent dictionary. The
simulation results show that our novel method for projection
matrix optimization significantly improves the ability of block-
sparse approximation techniques to reconstruct and classify
signals than the method proposed by Lihi Zelnik-Manor (LZM)
[1].

Index Terms—Compressive sensing, projection matrix opti-
mization, block-sparsity, coherence, ETF.

I. INTRODUCTION

CS declares that sparse signals can be exactly recovered
from a number of linear projections of dimension lower than
the number of samples required by Shannon-Nyquist Theorem
[2]. Recent work has demonstrated that the performance of
CS can be improved by using a carefully designed projection
matrix rather than a random one. The goal of projection matrix
optimization is to construct a projection matrix which can
improve the recovery ability for a given sparsifying dictionary.
In other words, the projection matrix is optimized to improve
the ability of sparse apporximation algorithms such as BP
and OMP to recover the sparsest representation from an
underdetermined system.

In some applications, there are some sparse vectors which
have nonzero entries appearing in blocks rather than arbitrarily
spreading throughout the vectors. They are the so-called
block-sparse signals. In this paper, we are interested in these
block-sparse signals which arise naturally when dealing with
the multi-band signals [3] or in the measurements of gene
expression levels [4].

We define two separate notions of coherence to analyze
the block-sparse model: one is the coherence within a block,

referred to as the subblock coherence which captures the local
properties of a dictionary, and the other is the coherence
between the different blocks, referred to as the interblock
coherence which describes the global dictionary properties.

The main objective and contribution of this paper are:
• Objective: in this paper, we consider the problem of

optimizing a projection matrix Φ for a CS system in
which the dictionary Ψ is given. We use the ETF rather
than the identity matrix to approach the Gram matrix of
equivalent dictionary. The projection matrix optimization
is formulated in terms of finding those Φ such that
the Frobenius norm of the difference between the Gram
matrix of the equivalent dictionary and the ETF Gram is
minimized.

• Contribution: we solve the problem of projection matrix
optimization for block-sparse signals which have nonzero
entries occuring in clusters. At the same time, we propose
an improved WCM algorithm based on ETF. Experiments
are given to show that the projection matrix obtained
by using our novel method outperforms others both in
the normalized reconstruction error and the successful
reconstruction rate.

The outline of this paper is arranged as follows. In Sec-
tion II, we briefly review the basic work on projection matrix
optimization and the basic knowledge of block-sparsity. In
Section III, we present our objective for projection matrix
optimization and solve it with an improved WCM algorithm
based on ETF. Simulations are presented in Section IV to show
the outperformance of our proposed method in improving
signal reconstruction accuracy. Some concluding remarks are
given in Section V to end this paper.

II. PRELIMINARIES

A. Basic Work on Projection Matrix Optimization

In this subsection we briefly review the basic work on
projection matrix optimization. The process of CS system can
be formulated as follows:

y = Φx = ΦΨθ △
= Aθ (1)
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where y ∈ ℜM is an observation vector and Φ ∈ ℜM×N with
M <N is the sensing matrix or projection matrix. x ∈ℜN is an
unknown vector which can be represented as x = Ψθ, where
Ψ ∈ ℜN×L with N ≤ L is an overcomplete dictionary and θ
is sufficiently sparse. A = ΦΨ ∈ ℜM×L is referred to as the
equivalent dictionary of the CS system.

The work of Tropp has shown that BP and OMP can
succeed in recovering θ from the measurement y = Aθ when
the following condition holds [5]:

||θ||0 ≤
1
2
(1+

1
µ(A)

) (2)

where µ(A) is the mutual coherence of the equivalent dictio-
nary A, which is defined as

µ(A)
△
= max

i̸= j

|AT
i A j|

∥Ai∥2∥A j∥2

with A j is the jth column vector of A.
The mutual coherence µ(A) characterizes the maximum

linear dependency possibly achieved by any two columns of A
and only reflects the most extreme correlation in A. Condition
(2) is a worst-case bound and does not reflect the average
recovery ability of sparse approximation methods. The smaller
µ(A), the higher successful reconstruction rate. That is to say,
the recovery can be improved when A is as orthogonal as
possible.

Let A=
[

A1 A2 · · · AL
]
∈ℜM×L. Denote gi j

△
= AT

i A j
as the (i, j)th element of the Gram matrix of A and

Sc
△
= diag(g−1/2

11 · · · g−1/2
j j · · · g−1/2

LL )

The Gram matrix of Ā
△
= ASc, denoted as Ḡ = {ḡi j}, is nor-

malized such that ḡ j j = 1, ∀ j. Obviously, µ(A) =maxi̸= j |ḡi j|.
Motivated by the above observations, LZM proposed a

method for projection matrix design by minimizing ||G− I||2F
[1]. In other words, their goal is to solve the following function

min
Φ

||AT A− IL||2F = min
Φ

||ΨT ΦT ΦΨ− IL||2F

= min
Φ ∑

i̸= j
|gi j|2 +

L

∑
j=1

|g j j −1|2
(3)

where IL is the identity matrix of dimension L. As can be
seen, this objective has a very clear physical meaning. The
first term is the averaged coherence factor while the second
term can be interpreted as a set of constraints on the norms
of the equivalent atoms A j to be one.

B. Block-Sparsity

In this subsection, we consider the problem of representing
a vector x ∈ ℜN in a given dictionary Ψ ∈ ℜN×L with N ≤ L,
i.e., x = Ψθ with θ ∈ ℜL. As the system of equation x = Ψθ
is underdetermined, there are infinitely many solutions. In this
paper, we consider the case of sparse vector θ with nonze-
ro entries appearing in blocks rather than arbitrarily spread
throughout the vector. Specific examples include signals which
lie in unions of subspaces please refer to [6].

We view θ as a concatenation of blocks in order to define
the block-sparsity. s is the length of the blocks and θ[ j] denotes
the jth block [7], i.e.,

θ = [θ1 · · ·θs︸ ︷︷ ︸
θT [1]

θs+1 · · ·θ2s︸ ︷︷ ︸
θT [2]

· · ·θL−s+1 · · ·θL︸ ︷︷ ︸
θT [B]

]T (4)

where L = Bs.
In a similar way, we can represent the dictionary Ψ as

follows

Ψ = [Ψ1 · · ·Ψs︸ ︷︷ ︸
Ψ[1]

Ψs+1 · · ·Ψ2s︸ ︷︷ ︸
Ψ[2]

· · ·ΨL−s+1 · · ·ΨL︸ ︷︷ ︸
Ψ[B]

] (5)

The k-sparsity of a vector θ is defined as

||θ||2,0 =
B

∑
j=1

I(||θ[ j]||2 > 0)≤ k

which means that x[ j] has nonzero Euclidean norm for at most
k indices j.

As A = Φ[Ψ[1] Ψ[2] · · · Ψ[B]] = [A[1] A[2] · · · A[B]], then
the (i, j)th block of the Gram matrix G ∈ ℜL×L, A[i]T A[ j], is
denoted as G[i, j].

III. SENSING MATRIX OPTIMIZATION BASED ON ETF

It can be shown [8] that for a matrix A with M×L, µ(A) is
bounded with µ ≤ µ(A)≤ 1 where the low bound is given by

µ
△
=

√
L−M

M(L−1)
(6)

We can note that when M << L, the low bound is approx-
imately equal to 1√

M
. It shows that we can only make µ(A)

infinitely close to µ rather than 0.
A unit-norm frame {Ai} (i.e., ||Ai||2 = 1, ∀ i) is said to be

equiangular if |AT
i A j|= c, ∀ i ̸= j, where c is some positive

constant. It can be shown [8] that the matrix A with ||Ai||2 =
1, ∀ i achieves µ(A) = µ if and only if {Ai} is ETF, and that
µ(A) = µ can only hold if L ≤ M(M+1)/2. For convenience,
such an Gram is called ETF Gram, denoted with Get f .

ETF has already been used in optimal dictionary design[9].
As it is also a very nice averaged mutual coherence behavior,
we formulate the optimal sensing matrix design problem as

min
Φ,Gt∈Hµ

||G−Gt ||2F (7)

where the dictionary Ψ is assumed to be given, G=ΨT ΦT ΦΨ
is the Gram matrix of the equivalent dictionary A = ΦΨ, and
the space Hµ is defined as

Hµ
△
= {Gt ∈ ℜL×L : Gt = GT

t , Gt( j, j) = 1, ∀ k,

max
i̸= j

|Gt(i, j)| ≤ µ} (8)

The objective (7) can be solved by using the alternating
minimization strategy.



Based on (8), we define the shrinking Gram Gt as

Gt [i, j]mn =


1, i = j,m = n
G[i, j]mn , |G[i, j]mn | ≤ µ
sign(G[i, j]mn )µ, |G[i, j]mn |> µ

(9)

with G[i, j]mn denoting the (m,n)th entry of G[i, j]. Then

||G−Gt ||2F =
B

∑
j=1

∑
i̸= j

||G[i, j]−Gt [i, j]||2F

+(
B

∑
j=1

||G[ j, j]−Gt [ j, j]||2F −
K

∑
m=1

(Gm
m −1)2)+

K

∑
m=1

(Gm
m −1)2

As we define the total interblock coherence µt
B, the total

subblock coherence νt and η as follows

µt
B

△
=

B

∑
j=1

∑
i̸= j

||G[i, j]−Gt [i, j]||2F

νt △
=

B

∑
j=1

||G[ j, j]−Gt [ j, j]||2F −
K

∑
m=1

(Gm
m −1)2

η △
=

K

∑
m=1

(Gm
m −1)2

which lead to

||G−Gt ||2F = µt
B +νt +η (10)

Instead of minimize µt
B and νt directly, we propose a

weighting factor α. Then, our goal is

Φ = argmin
Φ

1
2

η+(1−α)µt
B +ανt (11)

where 0 < α < 1.
To obtain a surrogate function we define f (G,Gt) as

f (G,Gt)
△
=

1
2

η(G)+(1−α)µt
B(G,Gt)+ανt(G,Gt)

=
1
2
||uη(G)||2F +(1−α)||uµ(G,Gt)||2F +α||uν(G,Gt)||2F

where the matrix operators uη, uµ and uν are defined as

uη(G)[i, j]mn =

{
G[i, j]mn −1, i = j,m = n
0, else

uµ(G,Gt)[i, j]mn =

{
G[i, j]mn −Gt [i, j]mn , i ̸= j
0, else

uν(G,Gt)[i, j]mn =

{
G[i, j]mn −Gt [i, j]mn , i = j,m ̸= n
0, else

Now, we can write

f (G,Gt) =
1
2
||G−hη(G)||2F +(1−α)||G−hµ(G,Gt)||2F

+α||G−hν(G,Gt)||2F
(12)

where the matrix operators hη, hµ and hν are defined as

hη(G)[i, j]mn =

{
1, i = j,m = n
G[i, j]mn , else

hµ(G,Gt)[i, j]mn =

{
Gt [i, j]mn , i ̸= j
G[i, j]mn , else

hν(G,Gt)[i, j]mn =

{
Gt [i, j]mn , i = j,m ̸= n
G[i, j]mn , else

Based on (12), we define a surrogate objective
g(G,G(n),G(n)

t ) at the nth iteration as

g(G,G(n),G(n)
t ) =

1
2
||G−hη(G(n))||2F

+(1−α)||G−hµ(G(n),G(n)
t )||2F

+α||G−hν(G(n),G(n)
t )||2F

(13)

It can be shown that the surrogate function (13) satisfies the
conditions of a surrogate objective for the bound-potimization
method and we no longer prove here.

Then, our goal is formulated as

min
Φ

g(G,G(n),G(n)
t )

= min
Φ

tr(AT AAT A−2AT Aht(G,G(n),G(n)
t )

= min
Φ

||G−ht(G(n),G(n)
t )||2F

(14)

where

ht(G(n),G(n)
t )

△
=

2
3
(

1
2

hη(G(n))+(1−α)hµ(G(n),G(n)
t )

+αhν(G(n),G(n)
t ))

Then, find the SVD of ht(G(n),G(n)
t ) :

ht(G(n),G(n)
t ) =VM∆MV T

M .

then we can get

Φ = ∆
1
2
MV T

M Ψ†

where Ψ† is the pseudo-inverse of Ψ.
A summary of the improved Weighted Coherence Mini-

mization (WCM) algorithm is given below.

Algorithm : WCM Based on ET F

Objective: Sensing matrix optimization with a given block-
sparsifying dictionary Ψ ∈ ℜN×L

Φ = argmin
Φ

1
2

η+(1−α)µt
B +ανt .

Initialization: Calculate the SVD of ΨT Ψ. Set Φ(0)as the
outcome of (3), i.e., Φ(0) = [IM 0]Λ− 1

2 UT .
Loop: Set n = 1 .

• Step I: While 1 ≤ n ≤ iter, compute

G(n) = (Φ(n−1)Ψ)T (Φ(n−1)Ψ).

• Step II: Obtain the shrunken Gram G(n)
t by applying the

shrinking operation (9)
• Step III:Calculate ht(G(n),G(n)

t ) .
• Step IV: Find the SVD of ht(G(n),G(n)

t ) :

ht(G(n),G(n)
t ) =VM∆MV T

M .

• Step V:Set Φ(n) = ∆
1
2
MV T

M Ψ† .
• Step VI: End while.

End Algorithm



IV. SIMULATIONS RESULTS

In this section, we compare the recovery and classification
abilities of BOMP [7] when using projection matrix designed
by our algorithm to the original WCM algorithm [1].

We generate a random dictionary ΨN×L with normally
distributed entries and normalized atoms. We divide the dictio-
nary into B= L

s blocks of size s. We then generate Num= 1000
test signals Θ of dimension L which is the k block-sparse
representations of X with respect to Ψ. We compare four
options for designing ΦM×N : (1) random; (2) the outcome of
DS[10]; (3) the WCM proposed by LZM; (4) the improved
WCM based on ETF denoted as WCMetf. The last two
methods are initialized as the outcome of DS.

We use two measures to illustrate the success of the simu-
lations based on their outputs Φ and X̂ . (1) The successful re-
construction rate of X: r = ||Θ̂

⊙
Θ||0

Lks with
⊙

denotes element-
wise multiplication. (2) The normalized reconstruction error:
e = ||X−ΨΘ̂||F

||X ||F .
In this experiment, we set N = 60,k = 2,s = 3,B = 40,M =

14, and L = Bs = 120 to illustrate the performance of the
improved WCM algorithm based on ETF as a function of
the weighting factor α. The result is shown in Fig. 1 and
Fig. 2. It indicates that our method for projection matrix design
significantly improves the ability of block-sparse approxima-
tion techniques to reconstruct and classify signals than the
other three methods. We can conclude that when designing
sensing matrices for block sparse decoding, the best results
are obtained by choosing α close enough to 1 in our method
as well as in the original WCM. That is to say, in the improved
WCM algorithm based on ETF, the best recovery results are
obtained when the total subblock coherence of equivalent
dictionary is minimized. Besides, from the Fig. 1 and Fig. 2,
we can see that as α increases, the reconstruction error and
the reconstruction rate change very slowly except for α = 0.5.

V. CONCLUSIONS

In this paper, we propose a novel method for the projection
matrix optimization. We use the ETF to approach the Gram
matrix of the equivalent dictionary rather than the identity
matrix used before. Then, we minimize a weighted sum of
the subblock coherence and the interblock coherence of the
equivalent dictionary. We can conclude from the simulations
that the best recovery results are obtained when the total
subblock coherence of equivalent dictionary is minimized.
Besides, the experiments also demonstrate that the projection
matrix obtained by using our method significantly outperforms
others in signal reconstruction accuracy.
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Fig. 1. The normalized reconstruction error corresponding to different
weighting factor α.
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Fig. 2. The successful reconstruction rate corresponding to different
weighting factor α.
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