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Abstract

We consider a sequence of three models for skin detection
built from a large collection of labelled images. Each model
is a maximum entropy model with respect to constraints
concerning marginal distributions. Our models are nested.
The first model, called the baseline model is well known
from practitioners. Pixels are considered as independent.
Performance, measured by the ROC curve on the Compaq
Database is impressive for such a simple model. However,
single image examination reveals very irregular results. The
second model is a Hidden Markov Model which includes
constraints that force smoothness of the solution. The ROC
curve obtained shows better performance than the baseline
model. Finally, color gradient is included. Thanks to Bethe
tree approximation, we obtain a simple analytical expres-
sion for the coefficients of the associated maximum en-
tropy model. Performance, compared with previous model
is once more improved.

1. Introduction
Skin detection consists in detecting human skin pixels from
an image. The system output is a binary image defined on
the same pixel grid as the input image.

Skin detection plays an important role in various appli-
cations such as face detection [13], searching and filtering
image content on the web [15][14]. Research has been
performed on the detection of human skin pixels in color
images and on the discrimination between skin pixels and
“non-skin” pixels by use of various statistical color mod-
els. Some researchers have used skin color models such
as Gaussian , Gaussian mixture or histograms [12][10]. In
most experiments, skin pixels are acquired from a limited
number of people under a limited range of lighting condi-
tions.

Unfortunately, the illumination conditions are often un-
known in an arbitrary image, so the variation in skin colors
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is much less constrained in practice. This is particularly true
for web images captured under a wide variety of conditions.
However, given a large collection of labeled training pixels
including all human skin (Caucasians, Africans, Asians) we
can still model the distribution of skin and non-skin colors
in the color space. Recently Jones and Rehg [9] proposed
techniques for skin color detection by estimating the distri-
bution of skin and non-skin color in the color space using
labeled training data. The comparison of histogram models
and Gaussian mixture density models estimated with EM
algorithm was analyzed for the standard 24-bit RGB color
space. The histogram models were found to be slightly su-
perior to Gaussian mixture models in terms of skin pixel
classification performance for this color space.

A skin detection system is never perfect and different
users use different criteria for evaluation. General appear-
ance of the skin-zones detected, or other global criteria
might be important for further processing. For quantitative
evaluation, we will use false positives and detection rates.
False positive rate is the proportion of non-skin pixels clas-
sified as skin and detection rate is the proportion of skin
pixels classified as skin. The user might wish to combine
these two indicators his own way depending on the kind of
error he is more willing to afford. Hence we propose a sys-
tem where the output is not binary but a floating number
between zero and one, the larger the value, the larger the
belief for a skin pixel. The user can then apply a threshold
to obtain a binary image. Error rates for all possible thresh-
olding are summarized in the Receiver Operating Charac-
teristic (ROC) curve.

We have in our hands the Compaq Database [9]. It is a
catalog of almost twenty thousand images. Each of them is
manually segmented such that the skin pixels are labelled.
Our goal in this paper is to explore different ways in which
this set of data can be used to perform skin detection on new
images. We will use the well known Markov Random Field
approach [16] [3], as well as Maximum Entropy Modeling
[7] [4] chapter 11, referred to as MaxEnt.

The rest of this paper is organized as follows: After set-



ting up the notations in section 2, section 3 will present a
very simple and crude model that we will refer to as the
baseline model. In section 4, we present a hidden Markov
Random Field model that takes into account the spatial reg-
ularity of skin and non-skin regions. A novel method for
parameter estimation will be explored. In section 5, we will
examine models that take into account joint distributions be-
tween nearby pixels in skin regions as well as in non-skin
regions. Finally, in Section 6 we will present concluding
remarks.

2 Notations

Let’s fix the notations. The set of pixels of an image is S.
The color of a pixel s ∈ S is xs. It is a 3 dimensional vector,
each component being coded on one octet. We notate C =
{0, . . . , 255}3. The ”skinness” of a pixel s, is ys with ys =
1 if s is a skin pixel and ys = 0 if not. We will also use the
term “label” in place of skinness. The color image, which
is the vector of color pixels, is x and the binary image made
up of the ys’s is notated y.

Let’s assume for a moment that we knew the joint proba-
bility distribution p(x, y) of the vector (x, y), then Bayesian
analysis tells us that, whatever cost function the user might
think of, all that is needed is the posterior distribution
p(y|x).

From the user’s point of view, the useful information is
contained in the one pixel marginal of the posterior, that is,
for each pixel, the quantity p(ys = 1|x), quantifying the
belief for skinness at pixel s. In practice the model p(x, y)
is unknown. Instead, we have the Compaq Database. It is a
collection of samples

{(x(1), y(1)), . . . , (x(n), y(n))}

where for each 1 ≤ i ≤ n, x(i) is a color image and y(i)

is the associated binary skinness image. We assume that
the samples are independent of each other with distribution
p(x, y). The collection of samples is referred later as the
training data. Probabilities are estimated by using classical
empirical estimators and are denoted with the letter q.

In what follows, we build models for the probability dis-
tribution of the skinness image given the color image using
maximum entropy modeling.

3 Baseline Model

3.1 Defining the model

First, we build a model that respects the one pixel marginal
observed in the Compaq Database. That is, for each image
x, consider the set of probability distributions over binary

images defined on the same grid as x that verify:

C0(x) : ∀s ∈ S, ∀xs ∈ C, ∀ys ∈ {0, 1}, p(ys|xs) = q(ys|xs)

In this expression, the quantity on the right side of the equal
sign doesn’t depend on the particular location s. It is the
proportion of pixels with label ys, among the ones with
color xs in the training data. For each x, The MaxEnt so-
lution under C0(x), using Lagrange multipliers is the inde-
pendent model:

p(y|x) =
∏

s∈S
q(ys|xs)

We call this model the baseline model. It is the most
commonly used model in the literature [12][10].

3.2 Experiments

Each term of the product on the right side can then be com-
puted using probabilities estimated on the training data as
follows using Bayes formula:

q(ys|xs) =
1

q(xs)
q(xs|ys)q(ys) (1)

with

q(xs) =
1∑

ys=0

q(xs|ys)q(ys)

Evaluation of the quantities in (1) is based on two 3-
dimension histograms, q(xs|ys = 1) and q(xs|ys = 0)
describing the one pixel color skin regions and non-skin
regions respectively. Several authors have tried to get a
parametric expression for these histograms as a mixture of
Gaussian distribution [9] [13]. Our experience is that the
Compaq Database is large enough so that crude histograms
made with one color value per bin do not over-fit. The ROC
curve for this model is presented in figure 2. Experiments
for this model, as well as for the other ones were made
using the following protocol. The Compaq database con-
tains about 18,696 photographs. It was split into two almost
equal parts randomly. The first part, containing nearly 2
billion pixels was used as training data while the other one,
the test set, was let aside for ROC curve computation. Fig-
ure 3, Top Left is one of the test images. This is a color
image. Top right is a grey level image. The grey-level is
proportional to the quantity p(ys = 1|x) evaluated with the
Baseline model. Many skin pixels are not detected. Figure
2 show ROC curves computed from 100 images (around 10
millions pixels), randomly extracted from the test set. The
Baseline model (with crosses) permit to detect more than
80% of the skin pixels with less than 10% of false positive
rate.



4 Hidden Markov Model

4.1 Defining the model

The baseline model is certainly too loose and one might
hope to get better detection results by constraining it to a
model that takes into account the fact that skin zones are
not purely random but are made of large regions with reg-
ular shapes. Hence, we fix the marginals of y for all the
neighboring pixels couples. We use 4-neighbors system for
simplicity in all that follows. For 2 neighboring pixels s
and t, the expected proportion of times that we observe
(ys = a, yt = b) should be q(a, b) for a = 0, 1 and b = 0, 1,
the corresponding quantities measured on the training set.
We assume that the model is isotropic, aggregating the cases
where s and t are in vertical position to the cases where
s and t are in horizontal position. We also assume that
the prior model is symmetric, that is p(ys, yt) = p(yt, ys).
Hence let us define the following constraints:

D : ∀s ∈ S, ∀t ∈ V(s),

p(ys = 0, yt = 0) = q(0, 0) and p(ys = 1, yt = 1) = q(1, 1)

where V(s) are the 4 neighbors of s. For each image x, the
MaxEnt model under

C1(x) = C0(x) ∩ D

is then the following Gibbs distribution [16].

p(y|x) =
p(y)

p(x)

∏

s∈S
q(xs|ys) (2)

with

p(y) =
1

Z
exp

∑

<s,t>

(a0(1− ys)(1− yt) + a1ysyt) (3)

where the sum ranges over all pairs of 4-neighbors pixels
< s, t >, Z is a normalizing constant and a0 and a1 are two
parameters that should be set up such that the constraints D
are satisfied. The model in equation (3) is known as a Potts
model [16].

4.2 Parameter estimation

Parameter estimation in the context of MaxEnt is still an ac-
tive research subject, especially in situations where even the
likelihood function cannot be computed for a given value of
the parameters. This is the case here since the so-called par-
tition function Z, viewed as a function of a0 and a1, can-
not be evaluated even for very small size images. One line
of research consists in approximating the model in order
to obtain a formula where the partition function no longer

appears: Pseudo-likelihood [1], [5] and mean field meth-
ods [20], [2] are among them. Another possibility is to use
stochastic gradient as in [19]. Here we explore a related
method based on the concept of Julesz ensembles defined
in [18]. We learn from this work that one can sample an
image from the model defined in (3) without knowing the
parameters a0 and a1. This is true only in the asymptotic
of an infinite image but we will apply the result for a large
image, say 512x512 pixels. In a second step, we use this
sample image in order to estimate the parameters a0 and
a1. This is done using the quantity p(ys = 1|y(s)) which is
the probability to observe the label 1 at pixel s given all the
other values yt, for t ∈ S and t 6= s. For the model in (3),
this quantity can be easily analytically computed as

p(ys = 1|y(s)) = φ((a1 + a0)ns(1)− 4a0)

where φ(x) = (1 + e−x)−1 is the logistic1 function and
ns(1) is the number of neighbors of s that take the label
1. This sum can take only five different values. For each
one, the quantity p(ys = 1|y(s)) can be estimated from the
sample image, leading to five linearly independent equa-
tions from which parameters a0 and a1 can be estimated.
Now, returning to how to obtain a sample from the model
in (3). The key idea which originated in statistical physics
[11], is that the MaxEnt model we are looking for is, in
an appropriate asymptotic meaning, the uniform distribu-
tion over the set of images that respect the constraints D.
Now, sampling from this set can be achieved numerically
using simulated annealing, see [6]. Details are presented in
[8]. The obtained values are a0 = 3.76 and a1 = 3.94.

4.3 Experiments

For a new image x, skin detection requires to compute for
each pixel the quantity p(ys|x). We do it for the model in
(2) by Markov Chain Monte Carlo. We generate, using the
Gibbs sampler algorithm [16], a sequence of label images

y1, y2, . . . , yn1 , . . . , yn2

with stationary distribution the one in equation (5). Then,
we estimate the quantity p(ys|x) by the empirical mean

1

n2− n1

n2∑

j=n1+1

y(j)
s

Our working parameters are n1 = 1 and n2 = 100. A out-
put image is presented in Figure 3 Bottom Left. It compares
favorably with the Baseline model. The ROC curve in Fig-
ure 2 indicates a drop of about 1% in false positive for the
same detection rate as the Baseline model.

1also denoted sigmod



5 First Order Model

5.1 Defining the Model

The baseline model was built in order to mimic the one
pixel marginal of the posterior, that is q(ys|xs) as observed
on the database. Then, in building the HMM model we
added constraints on the prior p(y) in order to smooth the
model. Now, we constrain once more the MaxEnt model
by imposing the two-pixel marginal of the posterior, that is
p(ys, yt|xs, xt), for 4-neighbor s and t, to match those ob-
served in the training data. Hence we define for each image
x, the following constraints:

C2(x) : ∀s ∈ S, ∀t ∈ V(s), ∀xs ∈ C, ∀xt ∈ C,

∀ys ∈ {0, 1}, ∀yt ∈ {0, 1},
p(ys, yt|xs, xt) = q(ys, yt|xs, xt)

The quantity q(ys, yt|xs, xt) is the expected number of
time we observe the values (ys, yt) for a couple of neigh-
boring pixels among the couples of neighboring pixels with
color values (xs, xt), regardless of the orientation of the
pixels s and t in the training set.

Clearly, for each x, C2(x) ⊂ C1(x). Using once more
Lagrange multipliers, the solution to the MaxEnt problem
under C2(x) is then the following Gibbs distribution:

p(y|x) =
1

Z(x)
exp(

∑

<s,t>

λ(xs, xt, ys, yt)) (4)

where Z(x) is a normalization function that depends on x
but not on y and λ(xs, xt, ys, yt) are parameters that should
be set up to satisfy the constraints. Assuming that one color
can take 2563 values, the total number of parameters is
2563 × 2563 × 2× 2. The previously mentioned parameter
estimation methods clearly do not apply. In [17], the au-
thors present a tree approximation to the pixel grid, called
“Bethe tree”, after the physicist H.A. Bethe who used trees
in statistical mechanics problems. Bethe trees permit us to
compute analytically an approximation of the parameters in
the model (4) as we shall see now.

5.2 Parameter estimation

The construction of Bethe trees is recursive. Figure 1 shows
the first step. Successive steps are obtained by adding 3 new
neighbors to each leaf.

Let us consider the following model

p(y|x) =
1

Z(x)
expH(x; y) (5)

with

H(x; y) =
∑

<s,t>

log q(ys, yt|xs, xt))− 3
∑

s∈S̊

log q(ys|xs)

where Z(x) is a normalizing function of x and S̊ is the
set of interior pixels of S, that is the ones that have exactly
4 neighbors. First, remark that the model in (5) is a special
case of model in (4). Secondly, we verify that under the
Beth tree approximation, with arbitrarily finite depth, the
model in (5) satisfies the constraints. The proof is in the
Appendix.

Now, let us see how in practice one can use the model in
(5). As for the HMM model, the objective is to obtain simu-
lations using the Gibbs sampler algorithm. This requires to
compute the conditional distribution of a label ys given all
the other labels and the image of the colors x. For s ∈ S̊,
we obtain

p(ys = 1|y(s), x) = φ(U(x; y)) (6)

with

U(x; y) =
∑

t∈V(s)

log
q(ys = 1, yt|xs, xt)
q(ys = 0, yt|xs, xt)

−3 log
q(ys = 1|xs)
q(ys = 0|xs)

Where φ is the sigmod function and V(s) are the 4 neigh-
bors of s.

5.3 Experiments

Now let’s see how each term in (6) can be evaluated. First,

q(ys = 1|xs)
q(ys = 0|xs)

=
q(xs|ys = 1)

q(xs|ys = 0)

q(ys = 1)

q(ys = 0)

and the quantities on the right side are easily obtained
from the database as before. Second,

q(ys = 1, yt|xs, xt)
q(ys = 0, yt|xs, xt)

=
q(xs, xt|ys = 1, yt)

q(xs, xt|ys = 0, yt)

q(ys = 1, yt)

q(ys = 0, yt)

Now the quantities on the right side involving the color
values cannot be directly extracted from the database with-
out drastic over-fitting since the histogram involved has a
support of dimension six. Hence some kind of dimension
reduction is needed.

One natural solution is to assume conditional indepen-
dence, that is

q(xs, xt|ys = 1, yt)

q(xs, xt|ys = 0, yt)
=
q(xs|ys = 1)

q(xs|ys = 0)

The obtained model is then a HMM model, as in equation
(2). Hence, Bethe tree method gives another way to estimate
parameters a0 and a1. Obtained values are a0 = 3.94 and
a1 = 4, which are close to the values obtained in section 4.

A more promising dimension reduction procedure is the
following approximation

q(xs, xt|ys, yt) ≈ q(xs|ys)q(xt − xs|ys, yt)
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Figure 1: A Bethe tree approximation of the pixel graph at
the neighborhood of pixels s and t
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Figure 2: Receiver Operating Characteristics (ROC) curve
for each model. x-axis is the false positive rate, y-axis is
the detection rate which is the complement to 1 of the false
negative rate. Baseline model is shown with crosses, HMM
model with triangles, while the first order model is shown
with squares.

That is, we assume that the color gradient at s, measured by
the quantity xt−xs, is, given the labels at s and t, indepen-
dent of the actual color xs. Evaluation of the right side of
the sign ≈ requires to compute 6 histograms with a support
of dimension 3 only.

Experiments with this model are presented in figures 2
and 3. The setup is the same as for the HMM model. In
figure 3, Bottom Right, one can visually appreciate the im-
provement in localization of the skin zones compared to the
HMM model. Bulk results in the ROC curve of Figure 2
shows a slight improvement of performance too.

6 Conclusions

We have considered a sequence of three models for skin de-
tection built from a large collection of labelled images. For
a given color image, such a model puts weight on binary
images defined on the same pixel grid. Each model is a
maximum entropy model with respect to constraints. These

Figure 3: Top left: the original image. Top right: the result
of the Baseline model. Bottom left: the result of the HMM
model. Bottom right: the result of the first order model

constraints concern marginal distributions. Our models are
nested. The first model, called the baseline model is well
known from practitioners. Pixels are considered as inde-
pendent. Performance, measured by the ROC curve on the
Compaq database is impressive for such a simple model.
However, single image examination reveals very irregular
results. The second model is a Hidden Markov Model. It
includes constraints that force smoothness of the solution.
The ROC curve obtained shows better performance than the
baseline model. Finally, color gradient is included in the
set of constraints. Thanks to Bethe tree approximation, we
obtain a simple analytical expression for the coefficients of
the associated MaxEnt model. Performance, compared with
previous model is once more improved.

7 Appendix

Following is the proof that under the Bethe tree approxima-
tion, the model in (5) satisfies the constraints C2. We restrict
the proof to s and t in the interior of S. First, consider the
Bethe tree of depth 1 shown in Figure 1. In order to sim-
plify the writing, we write r(ys, yt) for q(ys, yt|xs, xt), and
r(ys) for q(ys|xs).

Starting from (5), we have

p(ys, yt) =
N(ys, yt)

D

with

D =
1∑

ys=0

1∑

yt=0

N(ys, yt)

and
N(ys, yt) =

∑

y(s,t)

expH(x; y)



This last sum ranges over all the possible values for all the
labels except the ones at s and t. Now, from the Bethe tree
in Figure 1,

N(ys, yt) = N1(ys, yt)N2(ys)N3(yt)

with
N1(ys, yt) = r(ys, yt)r

−3(ys)q
−3(yt)

N2(ys) = (

1∑

yb=0

r(yb, ys)r
−3(yb)(

1∑

ya=0

r(yb, ya))3)3

N3(yt) = (

1∑

yc=0

r(yt, yc)r
−3(yc)(

1∑

yd=0

r(yc, yd))
3)3

Hence
N(ys, yt) = r(ys, yt)

which concludes the proof. One can easily extend the argu-
ment to Bethe tree of arbitrary fixed depth.
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