Q:

Roll a fair die.

(a) What is the expected number of different faces after rolling *n* times ?

- (b) What is the expected number of rolls to get all the faces from "1" to "6" ?
- (c) What is the probability of getting all the faces from "1" to "6" after rolling *n* times ?
- (d) Roll x times until getting all the faces from "1" to "6", what's the distribution of x?
- A:
- (a)

Let X be number of different faces after rolling *n* times. Let $X_i = 1$ if face i appears at least once; $X_i = 0$ otherwise. Then $X = \sum_{i=1}^{6} X_i$. Hence the desired quantity is

$$
E(X)
$$

= $E(\sum_{i=1}^{6} X_i)$
= $\sum_{i=1}^{6} E(X_i) = \sum_{i=1}^{6} P(X_i = 1) = \sum_{i=1}^{6} \left(1 - \left(\frac{5}{6}\right)^n\right) = 6\left(1 - \left(\frac{5}{6}\right)^n\right).$
(b)

Let *Y* be number of rolls to get all the faces from "1" to "6". Let Y_i = additional number rolls until the *i*-th different face appear. Then $Y = \sum_{i=1}^{6} Y_i$.

 $Y_1 = 1$. Deterministic.

$$
P(Y_2 = k) = \left(\frac{1}{6}\right)^{k-1} \cdot \frac{5}{6}
$$
, i.e. Y_2 follows geometric distribution with parameter $p_2 = \frac{5}{6}$.

…

We can observe that for $i = 2, 3, ..., 6$,

$$
P(Y_i = k) = \left(\frac{i-1}{6}\right)^{k-1} \cdot \frac{7-i}{6}
$$
, i.e. Y_i follows geometric distribution with parameter $p_2 = \frac{7-i}{6}$.
Then $E(Y_i) = \frac{1}{p_2} = \frac{6}{7-i}$ for $i = 2, 3, ..., 6$.

Note that this formula is also true for $i = 1$. Hence the desired quantity is

$$
E(Y)
$$

= $E(\sum_{i=1}^{6} Y_i)$
= $\sum_{i=1}^{6} E(Y_i) = \sum_{i=1}^{6} \frac{6}{7-i} = 6 \sum_{i=1}^{6} \frac{1}{7-i} = 6(\frac{1}{6} + \frac{1}{5} + \dots + 1) = \frac{14.7}{14.7}$.
(c)

Let $P_n(E)$ be the desired probability, where *E* denotes the event that "all faces show up". Obviously, $P_n(E) = 0$ if $n < 6$.

For $n \ge 6$, $E = \bigcap_{i=1}^{6} A_i$, where A_i denotes the event that face i shows up.

$$
P_n(E) = P_n(\bigcap_{i=1}^6 A_i) = 1 - P_n((\bigcap_{i=1}^6 A_i)^c) = 1 - P_n(\bigcup_{i=1}^6 A_i^c).
$$

\n
$$
P_n(\bigcup_{i=1}^6 A_i^c) = {6 \choose 1} P_n(A_1^c) - {6 \choose 2} P_n(A_1^c A_2^c) + {6 \choose 3} P_n(A_1^c A_2^c A_3^c) - {6 \choose 4} P_n(A_1^c A_2^c A_3^c A_4^c)
$$

\n
$$
+ {6 \choose 5} P_n(A_1^c A_2^c A_3^c A_4^c A_5^c)
$$

\n
$$
= 6\left(\frac{5}{6}\right)^n - {6 \choose 2} \left(\frac{4}{6}\right)^n + {6 \choose 3} \left(\frac{3}{6}\right)^n - {6 \choose 4} \left(\frac{2}{6}\right)^n + {6 \choose 5} \left(\frac{1}{6}\right)^n
$$

\n
$$
P_n(E) = 1 - 6\left(\frac{5}{6}\right)^n + 15\left(\frac{4}{6}\right)^n - 20\left(\frac{3}{6}\right)^n + 15\left(\frac{2}{6}\right)^n - 6\left(\frac{1}{6}\right)^n
$$

Specially, we can look at the case in which $n = 6$. The question is what's the probability of seeing all the six faces when the die is tossed 6 times. If we don't use the above formula, we can directly calculate

$$
P_6(E) = \frac{6!}{6^6} = 0.0154321.
$$

From the numerical results, we can see that if we want to have at least 95% probability of seeing all 6 faces, we need to roll at least 27 times.

(d) Simulation method

R-code:

Analytical method

Let $P_x(E)$ denote the desired probability, where E denotes the event that the sixth different face shows up. Then $P_x(E) = 0$ if $x < 6$. For $x \ge 6$, we have

$$
P_{\mathcal{X}}(E) = \sum_{i=1}^{6} P_{\mathcal{X}}(E|R_{\mathcal{X}} = i)P(R_{\mathcal{X}} = i) = \sum_{i=1}^{6} P_{\mathcal{X}}(E|R_{\mathcal{X}} = i) \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} P_{\mathcal{X}}(E|R_{\mathcal{X}} = i),
$$

where R_x is the result of last roll.

 $P_{\chi}(E|R_{\chi} = i) = P(\text{First } \chi - 1 \text{ rolls have all faces but } i)$

 $= P$ (First $x - 1$ rolls have all faces but 6).

Hence,

 $P_{\chi}(E) = \frac{1}{6}$ $\frac{2}{6}$ ∙ 6 \cdot P(First $x - 1$ rolls have all faces but 6)

$$
= P(\text{First } x - 1 \text{ rolls have all faces but 6})
$$

$$
= P_{x-1}(\bigcap_{i=1}^{5} A_i \cap A_6^c)
$$

= $P_{x-1}(\bigcap_{i=1}^{5} A_i | A_6^c) P_{x-1}(A_6^c)$
= $P_{x-1}(\bigcap_{i=1}^{5} A_i | A_6^c) \left(\frac{5}{6}\right)^{x-1}$,

where A_i denotes the event that face *i* appears and A_i^C is its complementary event. Note that

$$
P_{x-1}(\bigcap_{i=1}^{5} A_i | A_6^c)
$$

= 1 - P_{x-1}((\bigcap_{i=1}^{5} A_i)^c | A_6^c)
= 1 - P_{x-1}(\bigcup_{i=1}^{5} A_i^c | A_6^c)
= 1 - {5 \choose 1} P_{x-1}(A_1^c | A_6^c) + {5 \choose 2} P_{x-1}(A_1^c A_2^c | A_6^c) - {5 \choose 3} P_{x-1}(A_1^c A_2^c A_3^c | A_6^c) + {5 \choose 4} P_{x-1}(A_1^c A_2^c A_3^c A_4^c | A_6^c)
= 1 - 5\left(\frac{4}{5}\right)^{x-1} + 10\left(\frac{3}{5}\right)^{x-1} - 10\left(\frac{2}{5}\right)^{x-1} + 5\left(\frac{1}{5}\right)^{x-1}.

Therefore,

$$
P_{x}(E) = \left(1 - 5\left(\frac{4}{5}\right)^{x-1} + 10\left(\frac{3}{5}\right)^{x-1} - 10\left(\frac{2}{5}\right)^{x-1} + 5\left(\frac{1}{5}\right)^{x-1}\right) \cdot \left(\frac{5}{6}\right)^{x-1}
$$

$$
= \left(\frac{5}{6}\right)^{x-1} - 5\left(\frac{4}{6}\right)^{x-1} + 10\left(\frac{3}{6}\right)^{x-1} - 10\left(\frac{2}{6}\right)^{x-1} + 5\left(\frac{1}{6}\right)^{x-1}.
$$

$$
e_{i} = \sum_{x=6}^{+\infty} x \left(\frac{i}{6}\right)^{x-1}.\text{ Let } y = x - 5, \text{ then}
$$
\n
$$
e_{i} = \sum_{y=1}^{+\infty} (y + 5) \left(\frac{i}{6}\right)^{y+4}
$$
\n
$$
= \sum_{y=1}^{+\infty} y \left(\frac{i}{6}\right)^{y+4} + \sum_{y=1}^{+\infty} 5 \left(\frac{i}{6}\right)^{y+4}
$$
\n
$$
= \left(\frac{i}{6}\right)^{5} \sum_{y=1}^{+\infty} y \left(\frac{i}{6}\right)^{y-1} + 5 \left(\frac{i}{6}\right)^{5} \sum_{y=1}^{+\infty} \left(\frac{i}{6}\right)^{y-1}
$$
\n
$$
= \left(\frac{i}{6}\right)^{5} \frac{6}{6-i} \sum_{y=1}^{+\infty} y \left(\frac{i}{6}\right)^{y-1} \frac{6-i}{6} + 5 \left(\frac{i}{6}\right)^{5} \sum_{y=1}^{+\infty} \left(\frac{i}{6}\right)^{y-1}
$$
\n
$$
= \left(\frac{i}{6}\right)^{5} \left(\frac{6}{6-i}\right)^{2} + 5 \left(\frac{i}{6}\right)^{5} \frac{1}{1-\frac{i}{6}}
$$

$$
= \left(\frac{i}{6}\right)^5 \left(\frac{6}{6-i}\right)^2 + 5\left(\frac{i}{6}\right)^5 \frac{6}{6-i}
$$

= $\left(\frac{i}{6}\right)^5 \frac{6}{6-i} \left(\frac{6}{6-i} + 5\right) = \left(\frac{i}{6}\right)^5 \frac{6}{6-i} \left(\frac{36-5i}{6-i}\right).$

We can use this to calculate the mean, that is $e_5 - 5e_4 + 10e_3 - 10e_2 + 5e_1 = 14.7$.