
Generalized Learning of Neural Network based Semantic 
Similarity Models and its Application in Movie Search 

  
Xugang Ye, Zijie Qi, Xinying Song, Xiaodong He, Dan Massey 

Microsoft 
Bellevue, WA, USA 

{xugangye, zijieqi, xinson, xiaohe, danmass}@microsoft.com 

 

 

ABSTRACT 

Modeling text semantic similarity via neural network approaches 
has significantly improved performance on a set of information 
retrieval tasks in recent studies. However these neural network 
based latent semantic models are mostly trained by using simple 
user behavior logging data such as clicked (query, document)-pairs, 
and all the clicked pairs are assumed to be uniformly positive 
examples. Therefore, the current method for learning the model 
parameters does not differentiate data samples that might reflect 
different relevance information. In this paper, we relax this 
assumption and propose a new learning method through a 
generalized loss function to capture the subtle relevance differences 
of training samples when a more granular label structure is 
available. We have applied it to the Xbox One’s movie search task 
where session-based user behavior information is available and the 
granular relevance differences of training samples are derived from 
the session logs. Compared with the current method, our new 
generalized loss function has demonstrated superior test 
performance measured by several user-engagement metrics. It also 
yields significant performance lift when the score computed from 
our new model is used as a semantic similarity feature in the 
gradient boosted decision tree model which is widely used in 
modern search engines. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6 [Artificial Intelligence]: Learning 

General Terms 

Algorithms, Experimentation 

Keywords 

Neural Network, Semantic Model, Loss Function, Click Logs, 
Movie Search 

 

1. INTRODUCTION 
Nowadays search engines are heavily relied on for retrieving 
relevant information for users, and search engines that can 
understand the search intent behind the words of a query despite 

language divergence are highly in demand. However, this presents 
a great challenge. Unlike term or lexical matching, which is 
straightforward and easy to implement, building a search engine 
that understands the intent and contextual meaning of the query is 
difficult, especially when the query is short and ambiguous. In 
order to address this problem, many latent semantic models have 
been proposed during the past decade. Let’s review some of the 
major techniques presented in the literature. 

1.1 Latent Semantic Models  
Latent Semantic Analysis (LSA) [7][8] is a straightforward and 
well-known latent semantic model. It reconstructs the term-
document matrix by using low rank matrix approximation such that 
both the terms and the documents can be mapped to a low 
dimensional space. However, the mapping is done by a linear 
projection. Nonlinear methods include popular topic models such 
as the probabilistic latent semantic indexing (PLSI) [12] and the 
Latent Dirichlet allocation (LDA) [2], with each being a generative 
model and having a strong probability foundation. PLSI assumes 
that the document index, which has a multinomial prior, generates 
a latent topic and the topic in turn generates a word. LDA assumes 
that a word is generated by a latent topic, and the topic is a sample 
of a multinomial distribution that has a Dirichlet prior. By using 
either PLSI or LDA, a document’s representation at the topic level 
can be computed [11]. One important application of the latent 
semantic models is to fulfil the needs of semantic matching for 
search engines by calculating the similarity between the documents 
at the topic or semantic level. Recently, some semantic models 
were proposed for search specifically. For examples, the coupled 
probabilistic latent analysis (CPLSA) by Platt et al. [17] is an 
extension of the PLSI, the Bi-Lingual Topic Model (BLTM) by 
Gao et al. [9] is an extension of the LDA, and both of them can 
calculate the query-document similarity at the topic level. 

1.2 Neural Network Models 
Another set of latent semantic models are neural network based. It 
has been shown that a neural network with multiple hidden layers 
can discover even more sophisticated latent structures than a neural 
network with a single hidden layer [1][19]. Therefore, recently a 
series of latent semantic models with deep neural network structure 
have been proposed to model complex concepts and hidden 
hierarchical structures [1][10][13][16][19][20]. The Semantic 
Hashing method by Salakhutdinov and Hinton [19] was designed 
to project a bag-of-words based term vector to a binary code vector 
by an auto encoder that minimizes the reconstruction error. 
Recently, a deep Structured Semantic Model (DSSM) was 
developed by Huang et al. [13] to model the semantic similarity 
between a query and a document for the task of web search. More 
recently, Shen et al. [20] extended the DSSM to the convolutional 
latent semantic model (CLSM) to capture important contextual 
information without making a strong bag-of-words assumption. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
KDD’15, August 10-13, 2015, Hilton, Sydney. 
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00. 



Compared with the previous latent semantic models, the key 
distinct feature of DSSM and CLSM is that they are task-specific 
supervised learning algorithms. Both DSSM and CLSM were 
originally designed for web search and they were trained by using 
the clicked (query, document)-pairs. On the contrary, the previous 
latent semantic models are based on unsupervised learning and the 
semantic similarity computed from any of these models is not 
learned from the labels. It has been reported in [13][20] that when 
used as a single-feature ranker for web search, both DSSM and 
CLSM significantly outperform other latent semantic models such 
as LSA, PLSI, BLTM in terms of the NDCG (Normalized 
Discounted Cumulative Gain [14]) measurements using human 
labels. Although CLSM has higher NDCG values than DSSM, due 
to the convolutional neural network structure, the CLSM’s 
computational cost in scoring is much higher than DSSM, which 
could be a concern for the online search system. Besides the web 
search task, DSSM and CLSM can also be applied to a broader set 
of applications such as word embedding [21] and question-
answering [22], etc. 

1.3 Loss Function 
Despite the superior performance of DSSM and CLSM, these 
models treat all the clicked (query, document)-pairs uniformly as 
positive examples. Therefore, the current method for learning the 
model parameters does not differentiate data samples that might 
reflect different relevance information. In other words, there is no 
differentiation between two clicked documents under the same 
query, with one being more relevant and the other being less 
relevant. In this paper, we propose a generalized loss function that 
can incorporate the subtle relevance differences among the 
documents for learning the model parameters. Our experimental 
results have shown that the new method can significantly improve 
the ranking results on the movie search tasks. 

Our new method requires fine-grained relevance labels. Some 
commercial search engines like Bing has already utilized multi-
level relevance information. There are usually two kinds of 
resources: human judgments and search logs. The human labels for 
web search usually have 5 coarse grained relevance levels: Perfect, 
Excellent, Good, Fair, and Bad. When this type of labels are taken, 
each category will be converted into an appropriate number (the 
more relevant the label represents, the greater the number is). The 
labels constructed from the search logs often take various forms of 
click-likelihood, which have numerical values. Although the 
commercial search engines have already used fine-grained 
relevance labels, none of neural network based latent sematic 
models has done so. This is the first study that investigates using 
fine-grained relevance labels to improve the neural-network-based 
latent semantic models. 

1.4 Model Score as Ranking Feature 
Since the semantic similarity score computed from a neural-
network-based latent semantic model can be viewed as a feature, it 
is worthwhile considering how a commercial search engine can 
benefit from this feature. Currently the LambdaMart algorithm [4], 
which is an extension of the LambdaRank algorithm [4], is widely 
used as a core ranking algorithm of many commercial search 
engines including Bing. The LambdaMart is a gradient boosted 
decision tree model that takes as many features as it can and selects 
the important ones. Usually, many sophistic features are manually 
built for the LambdaMart based on term or lexical matching. An 
interesting question is how much improvement there could be if the 
semantic similarity score is added as a new feature to the 
LambdaMart. Our experimental results have shown that the 
semantic similarity score computed from our new model not only 

outperforms the semantic similarity scores computed from previous 
state-of-the-art models such as DSSM, but also further improves 
the overall performance of a strong LambdaMart-based ranker 
when used as an additional feature. 

1.5 Movie Search 
It’s very expensive to obtain high quality human labels on a large 
scale. As a result, both DSSM and CLSM for the web search task 
were trained from the click-through data and evaluated using the 
human labels. Moreover, if there are only a very limited number of 
judges, the bias is a serious concern. Although click signals can 
easily scale up, they are very noisy. However, we found that for 
media search, noise in click information is easier to handle, and 
labels can be built from the click-through data with good quality 
comparable to human labels. Therefore, as the first shot, we 
selected the media search domain and used movie search logs to 
experiment on our idea. 

We extracted the movie search logs from the Xbox One, a very 
popular entertainment platform. The data has an advantage that 
each logged query session contains a user ID. Therefore, we can 
calculate how many distinct users have clicked a movie under a 
query in a period of time and use it as the label for a (query, movie)-
pair. This is an aggregated number that is robust to noise, easy to 
scale up and calculate. Our experiments have shown that the labels 
generated in this way are highly consistent with the human labels 
and they can be easily built into our generalized loss function. 
Obviously, this advantage also widely exists in many other online 
video service platforms such as YouTube, Netflix, Amazon Video 
and Hulu etc. Therefore, the method for generating labels from the 
Xbox One’s search logs can also be used for generating the same 
kind of labels for those platforms. We should point out that our 
generalized loss function is not limited to the specific domain of 
media search. It can be used broadly as long as fine-grained labels 
can be built. 

1.6 Organization of the Paper 
The rest of the paper is organized as follows. We first describe our 
generalized loss function for the neural-network-based latent 
semantic models and provide an analysis of its probability 
foundation. We then define our new model, with the same 
architecture as the DSSM model in [13], but it is learned by 
minimizing the proposed generalized loss function. We also 
describe the corresponding new gradient computation method and 
the dimension reduction technique. The reason why we choose 
DSSM is because it has much lower computational cost in scoring 
than CLSM and hence it’s easier to implement for a commercial 
search engine. Replacing CLSM’s loss function will be studied in 
future work. After defining two types of evaluation metrics in our 
experiments, we present the results of applying our new model to 
the task of movie search and compare it against previous models on 
various benchmarks. In evaluation, we not only introduce the 
effectiveness of the new model in the single-feature-ranking 
setting, but also present the results of adding the semantic similarity 
score computed from our new model to the LambdaMart as a new 
feature. The new model leads to significant improvement in both 
settings, which demonstrates the effectiveness of the proposed 
method. In the end, we draw the conclusion and suggest future 
research directions. 

2. OUR MODEL 

2.1 Generalized Loss Function 
The main contribution of this work is the generalization of the loss 
function for learning the neural network based semantic similarity 
models. Extended from the loss function originally proposed in 



[13], the generalized loss function takes into account fine-grained 
relevance labels and captures the subtle relevance difference of 
different data samples. Suppose ���� , ���: 	 = 1,2, … , �� are � 
��, ��-pairs such that �� is clicked under ��. To learn a semantic 
similarity model, the DSSM in [13] aims to minimize 

���Λ� = − ∑ �ln ����|��; Λ������ ,                                                 (1)  

where ����|��; Λ� is the parameterized conditional probability that 
document �� is relevant given query �� and Λ denotes the set of 
model parameters. Minimizing this loss function is interpreted as 
maximizing the joint probability that ���, ���, …, ���, ��� are 
relevant pairs, with the assumption that they are independent of 
each other. Note that in the objective function in Eq. (1) “clicked” 
is treated as “relevant” regardless how many different people 
clicked �� under ��. In order to take into account the various 
relevance levels reflected by different click signals for different 
clicked pairs, we proposed a generalized loss function. Suppose for 
each 	, the clicked pair ��� , ��� is labeled ��, where 0≤ �� ≤ 1 and 
�� is a probabilistic measure of the relevance of �� to ��. Our 
generalized loss function is expressed as 

    � �Λ�  

= − ∑ !�� ln ����|��; Λ� + �1 − ��� ln#1 − ����|��; Λ�$%���� .    (2) 

Clearly, when �� = 1 for all 	, Eq. (2) reduces to Eq. (1). To 
interpret this loss function, imagine that there are & users. For the 
	-th pair ��� , ���, the relevance probability is ����|��; Λ�. Suppose 
relevance leads to click(s), and �� is the portion of the & users who 
clicked �� given ��, then the probability that there are &�� users 

who click �� under �� is 

'��Λ� = ( &
&��) ����|��; Λ�*+,#1 − ����|��; Λ�$*-*+,

.           (3) 

Assuming the clicks are independent of each other, the joint 
probability that there are &�� users who click �� under �� for 	 =
1, … , � is 

∏ '��Λ����� ∝ ∏ ����|��; Λ�*+,#1 − ����|��; Λ�$*-*+,���� .     (4) 

By taking the negative natural logarithm of (4), we have 

− ∑ ln '��Λ����� = −&� �Λ� + Const.                                       (5)  

Therefore, minimizing �  in Eq. (2) is equivalent to maximizing 
the joint probability in Eq. (4). And this joint probability takes into 

account the probabilistic labels ��, …, ��. 

2.2 Analysis 
To illustrate the benefit of generalizing �� in Eq. (1) into �  in Eq. 
(2), let’s consider the test accuracy of the prediction. 

Let �45 be a probabilistic prediction vector for a collection of test 
cases. Let �5′ be an approximated target vector, and recall �5 is the 

true target vector. Note that 0≤ ��7 ≤ 1 for all 	. Assume ��7 =
8���� for all 	, where 8: �0,1� → �0,1� is an approximation function 
that satisfies 

(i)  8 is monotonically increasing; 

(ii) 8�0� = 0, 8�1� = 1, lim+→= 8��� ln � = 0. 

The binary labels can be viewed as a special 8 such that 8��� = 1 
if � > �∗; 8��� = 0 otherwise, where �∗ is the cut-off and 0 ≤
�∗ ≤ 1. More generally, the layered labels (e.g., “Perfect”, 
“Excellent”, “Good”, “Fair”, “Bad”) can be viewed as having 
multiple cut-offs. By using the concept of Kullback–Leibler 
divergence [15] (or KL-distance), we can show how much accuracy 
could be lost when �5′ = 8��5� is used to approximate �5. 

We first consider the loss of having prediction �45 when the true 

target �5 is given: 

�#�45; �5$ = − ∑ ��� ln �� + �1 − ��� ln�1 − ����� .                         (6) 

Note that this loss is random since �45 is random. We further consider 

the expectation of this loss, denoted as @!�#�45; �5$%. Note that 

    @!�#�45; �5$%  
= − ∑ ���@�ln ��� + �1 − ���@�ln�1 − ������   

≥ − ∑ ��� ln @���� + �1 − ��� ln�1 − @�������   

≥ − ∑ ��� ln �� + �1 − ��� ln�1 − ����� ,                                      (7)  

where the first “≥” is by Jensen’s inequality and the second “≥” is 
due to the fact that �� ln B + �1 − ��� ln�1 − B� is maximized over 
0 ≤ B ≤ 1 when B = ��. The lower bound can be reached if and 

only if �45 equals the constant �5. This condition seems to be too 
strong since no prediction can be expected to have 100% accuracy. 

However, the necessary condition @#�45$ = �5 for reaching the lower 

bound is realistic. We define a model as consistent if the expected 
value of its prediction equals its target. 

We’re now ready to show how much accuracy could be lost when 

a consistent model generates a prediction �45 of the approximated 

target �5′ = 8��5�. By consistency definition, we have @#�45$ = �5′. 
We are interested in the quantity @!C���45||�5�%, which is the 

expected KL-distance between the prediction �45 and the true target 

�5. We have 

   @!C���45||�5�%  
= @�− ∑ ���ln �� − ln ���� �  
= @�− ∑ ���ln �� − ln ��7 + ln ��7 − ln ���� �  
= @�− ∑ ���ln �� − ln ��7�� � + @�− ∑ ���ln ��7 − ln ���� �  
= − ∑ @�����ln �� − ln ��7�� + @�C���45||�5′�� 
= − ∑ ��7�ln �� − ln ��7�� + @�C���45||�5′�� 
= C���5′||�5� + @�C���45||�5′��.                                                     (8) 

Hence, by the KL-distance measure, predicting �5′ yields the loss of 
accuracy that is at least C���5′||�5�. That is to say, even if the model 
can learn its target with 100% accuracy such that the second term 
vanishes, there is still the first term remaining that is completely 
due to the label error. If we can improve the labels, then we can 
improve the prediction independent of the learning model. Back to 
the benefit of generalizing �� in Eq. (1) into �  in Eq. (2), since �� 
corresponds to the extreme case that all the clicked pairs are labeled 
1, it can be expected that better labels could be built to obtain better 
ranking results. 

3. LEARNING MODEL 
The learning model is essentially the parameterization structure of 
the relevance probability ���|�� for the query � and document �. 
As mentioned earlier, we adopted the structure of the DSSM in 
[13]. At first, ���|�� is defined as a normalized exponential of the 
semantic similarity function denoted as E��, ��. Then E��, �� is 
parameterized via two neural networks, with one for � and the other 
for �. We can show that for parameter estimation, the formula for 
computing the gradient of �� in Eq. (1) only needs slight changes 

to fit for �  in Eq. (2). 

3.1 Relevance Probability 
The softmax form of the parameterized relevance probability 
���|�; Λ� can be expressed as 



���|�; Λ� = FGH �IJ�K,L;M��
FGH �IJ�K,L;M��N∑ FGH �IJ�K,LO;M��PO∈RS

 ,                      (9)  

where T > 0 is a pre-determined smooth parameter and U- is the 
set of all irrelevant documents to be ranked under �. In practice, for 
many queries, there are very few or no irrelevant documents to be 
ranked, as a result, U- is approximated by randomly choose V�≥ 4� 

unclicked documents under ��. 

3.2 Semantic Similarity 
The parameterized semantic similarity function E��, �; Λ� is 
defined in the form of the cosine similarity: 

E��, �; Λ� = X5�Y�ZX5�P�
||X5�Y�||∙||X5�P�|| ,                                                          (10) 

where B5�K� = \#�; Λ�K�$ and B5�L� = ]#�; Λ�L�$ are the semantic 

vectors of � and � respectively, and Λ�K� and Λ�L� are parts of 
parameter set Λ corresponding to � and � respectively. The two 
functions \ and ] are represented by two neural networks. For both 
nets, ^_�ℎ function is used as the activation function. That is if we 

denote the a-th layer as �b�c, b c, …, b�d
c � and the �a + 1�-th layer as 

�b�cN�, b cN�, …, b�def
cN� �, then for each 	 = 1, … , �cN�, 

b�cN� = �-FGH#- g,d$
�NFGH#- g,d$ ,                                                                   (11) 

where _�c = ∑ hi,�c bic�di�� + h=,�c . Note that the last layers for � and 

� are B5�K� and B5�L� respectively. The structure is illustrated in the 
following Figure 1. 

 

 

Figure 1: Illustration of the neural network structure for computing 
E��, �; Λ�. For both the query � and document �, it maps high 
dimensional sparse bag-of-words term vectors into low 
dimensional dense semantic vectors. 

 

3.3 Parameter Estimation 
To calculate the gradient of the loss function in Eq. (2), we first 

express ����|��; Λ� as 

����|��; Λ� = �
�N∑ FGH#-I∆P, $P∈R,S

 ,                                              (12) 

where ∆L� =  E��� , �� ; Λ� − E��� , �; Λ�. Then  

∇M log ����|��; Λ� = − ∑ mL� ∙ ∇M∆L�L∈n,S ,                                (13) 

where mL� = -I FGH#-I∆P, $
�N∑ FGH#-I∆PO, $PO∈R,S

 , and 

∇M log#1 − ����|��; Λ�$ = ∑ �oL� − mL� � ∙ ∇M∆L�L∈n,S ,              (14) 

where oL� = -I FGH#-I∆P, $
∑ FGH#-I∆PO, $PO∈R,S

 . 

Therefore, 

∇M��Λ� = ∑ ∑ !mL� − �1 − ���oL� % ∙ ∇M∆L�L∈n,S
���� .                   (15)  

In the special case that �� = 1 for all 	, this formula reduces to the 
same form as Eq. (1) used in [13][20]. 

3.4 Dimension Reduction 
Since the dimension of the sparse bag-of-words term vector 
representation of an input text stream can be very high due to a vast 
vocabulary size and misspellings, we apply the letter-tri-gram 
(LTG) based text stream representation for the purpose of the 
dimension reduction [13]. To illustrate the idea, consider the 
English text stream “2014 Sci-Fi Movies”. It’s first converted to 
“#2014# #sci# #fi# #movies#”, and then broken into “#20 201 014 
14# #sc sci ci# #fi fi# #mo mov ovi vie ies es#”, which is the final 
LTG-sequence. If we only include the 26 lower case English letters 
a-z and the 10 digits 0-9, then the size of the LTG-dictionary will 

be 36r + 2 × 36 + 36 = 49,284. In general, the size can be 

expressed as br + 2 × b + b, where b is number of valid letters. If 
the original word based dictionary has 500k unique words, then the 
LTG representation has 10-fold reduction in dimensionality. 
However it is not easy to look up a word in such a mechanism.  
More storage may be used in order to facilitate the look-up of any 
LTG-word as we used in our work. Consider the following hash 
function of the LTG-word XYZ 

ℎ�B�v� = B�b + 1� + ��b + 1� + v,                                        (16)  

where B, �, v are the numeric indices of X, Y, Z respectively and 
they are in the range from 0 to b.  Consequently, the LTG-word 
XYZ corresponds to the ℎ�B�v�-th word in the extended dictionary 

that has the size �b + 1�r. The additional space is due to those 
invalid LTG-words in the forms *#*, ##*, *##, and ###. 

Besides the dimension reduction, there is another benefit of using 
the LTG based text representation: the morphological variants of a 
same text stream can be mapped to close vectors. This is 
encouraging since a query can always have misspelled forms. Take 
an example “bananna” vs. “bannana”. They are two misspelled 
forms of the correct word “banana”, and they have the same LTG 
words: #ba, ban, ana, nan, ann, nna, na#. While the correct spelling 
has the LTG words: #ba, ban, ana, nan, na#, with ana occurring 
twice, so the correct word has 5 LTG words with its two misspelled 
forms in common. 

4. EVALUATION METRICS 
We used two types of metrics to evaluate the model performance 
on the test set. The first is the average NDCG at a truncation level. 
Precisely, we define the average NDCG of the top 	 positions as 

NDCGzzzzzzzz� = �
{ ∑ |∑ }~��

Y

������Ni�
�i�� � / |∑ }~�zzzz�

Y

������Ni�
�i�� �K ,                  (17) 

where ��bzzzz�
K ≥ ��bzzzz 

K ≥ ⋯ represent the descending order of 

��b�
K , ��b 

K , … , which are the relevance gains of the documents at 

positions 1,2, … respectively under the query �. We require � to 

satisfy that &_Bi��biK − &	�i��biK ≥ � > 0, where � is a pre-

determined parameter. � is the total number of such queries in the 
test data set. 

In the scenario where there is no preference on the order of the 
desired documents as long as they are returned among the top 	 
positions, we use the second type of metrics. It’s the average top-a 
ground truth labels’ recall at the top 	 positions in prediction, where 
a ≤ 	. Precisely, it’s defined as 

Recallzzzzzzzz�c = �
{ ∑ �

c ∑ ����biK ≥ ��bzzzzc
K��i��K ,                                     (18)  

where ��∙� is the indicator function. 

B5�K� 

⋯ 

Λ�K� 

B5�L� 

⋯ 

Λ�L� 

E��, �; Λ� 

� � 



5. EXPERIMENTS 
In this section, we introduce the results of applying our new model 
with the generalized loss function to the task of movie search. We 
collected the data from the Xbox One’s query-logs, and used 
various algorithms and benchmarks including ours to predict the 
ranking order in a future period of time. 

5.1 Relevance Measure 
Many studies such as [5][6] have shown that the click-through data 
are effective in generating labels for learning ranking models. One 
relevance measure is the click-through rate (CTR). The CTR for a 
��, ��-pair in a period of time is defined as the ratio of number of 
clicks to number of views. Although CTR is a good relevance 
measure by its definition, it’s difficult to accurately calculate for 
our data. One reason is that it’s hard to know whether the document 
� is viewed or not if it appears in a �-triggered session but is not 
clicked. Another reason is that one user might click � under � many 
more times than others do. In this case, the CTR calculation is 
biased toward this person. To avoid these issues, we use the number 
of distinct users who clicked � under � in a period of time as the 
relevance measure to determine the position of � in the ranking 

result of all the document candidates under �. 

To show the validity of this measure, we sampled a set of 22,190 
(query, movie)-pairs from the query-logs from December 2013 to 
March 2014, and obtained the 4-level human labels from 5 human 
judges. The four levels are Excellent, Good, Fair, and Bad. For 
each pair, we counted number of distinct users who clicked the 
movie under the query. The histograms of the logarithmic values 
under Bad, Fair or Good, and Excellent respectively are displayed 
in the following Figure 2. It can be seen that the more people who 
clicked, the more relevant a document is under a query. Therefore, 
it’s reasonable to treat more people who clicked as more relevant. 

  

      

 

 

Figure 2: The histograms of the logarithmic values of number of 
people who clicked, under different human labels. 

 

Compared with the labels generated by the human judges, the labels 
decided by the number of people who clicked have some 
advantages. First, it’s a good indicator of user engagement. For a 
popular query, it can reveal the intentions of different groups of 
people. The consensus is from a large number of real users other 
than a very limited number of human judges, therefore it contains 
much less bias. Second, human labels are expensive and it’s very 

difficult to scale up, whereas the vast amount of click-through data 
can be obtained at very low cost.  

Although the position bias (the higher the ranking position of the 
document shown to the user, the more likely it’s clicked) is an 
important factor in typical web search problems, movie search has 
a quite different scenario due to its unique user interface. Usually, 
movie results are displayed in tile or icon layout styles that do not 
support the common top-down assumption of the web search. 
Moreover the picture of a movie’s poster also affects its click 
probability. Therefore, click models that are sorely based on the 
analysis of position bias may not apply. On the other hand, number 
of people who clicked is an aggregated result, which is robust to 
noise. Empirically, at least for the movie search, we found the 
quality of this measure is comparable to human labels. 

5.2 Data Preparation 
We processed a set of query-logs from April 2014 to November 
2014 and split it into the training part and the test part. The training 
part is from April 1, 2014 to September 30, 2014; the test part is 
from October 1, 2014 to November 30, 2014. For both the training 
part and the test part, for each (query, movie)-pair, we counted the 
number of distinct users who clicked the movie under the query and 
used it as the label. 

Previous studies such as [6] have shown it is important to remove 
noise from the click-through data, therefore we set a threshold to 
filter out spam queries. Precisely, a query is viewed as a spam query 
if all the movies under it were clicked by at most 1 distinct user. In 
other words, we only kept the queries under each of which there is 
at least one movie that was clicked by at least 2 distinct users. We 
did this filtering for both the training part and the test part. 
Additionally, for the test set, we increased the threshold by 1 and 
removed any query with only identical labels since it is impossible 
to evaluate the performance difference in this case. 

After the filtering, there are 674,307 unique (query, movie)-pairs in 
the training set, with 26,958 unique queries; and there are 176,181 
unique (query, movie)-pairs in the test set, with 7,018 unique 
queries. In the training set, there are 106,285 clicked (query, 
movie)-pairs, and in the test set, there are 27,595 clicked pairs. 

The average query length is 2.40 for the training set and 2.30 for 
the test set. The document of a movie contains 5 fields: release date, 
title, actors, genre, and region. To build the data for training and 
testing DSSM and our model, we form the text string of a document 
via the concatenation as: release date + title + actors + genre + 
region. 

There are 47,069 unique movies in the processed training and test 
sets. The average document length is 18.36 for the training set and 
20.48 for the test set. The following Table 1 summarizes the basic 
statistics. 

 

Table 1: Data statistics 

 Training set Test set 

Time window 2014-06-01 to 2014-09-30  2014-10-01 to 2014-11-30 

Num. of unique queries 26,958 7,018 

Num. of unique pairs 674,307 176,181 

Num. of unique clicked pairs 106,285 27,595 

Ave. query length 2.40 2.30 

Ave. doc. length 18.36 20.48 

 

 Num. of people who clicked 

 mean median 

Bad 2.81 0 

Fair or Good 23.56 3 

Excellent 79.63 15 

 



The labels in both the training and the test sets have long tail 
distributions. The following Figure 3 shows the histograms of the 
logarithmic values of the labels in two scenarios for both the 
training and the test sets. In scenario 1, the histogram is generated 
from all ��, ��-pairs (clicked or not clicked). The scenario 2 is the 
scenario 1 zoomed in on the clicked ��, ��-pairs only. The zoomed-
in histograms indicate that the majority of the clicked pairs have 
labels 1 to 3. 

 

 

 

  

Figure 3: The histograms of the logarithmic values of number of 
people who clicked for scenario 1 (all pairs) and scenario 2 (clicked 
pairs only) in both the training and the test sets. 

 

Among the 22,190 (query, movie)-pairs from the query-logs from 
December 2013 to March 2014 that have 4-level human labels 
(Excellent, Good, Fair, Bad), there are 3,763 labeled Excellent, 
3,016 labeled Good or Fair, and 15,411 labeled Bad. There are 
3478, 2287, and 4195 that were clicked in the three groups, 
respectively. Therefore, the likelihoods of being clicked for the 
three groups are 0.924, 0.758, and 0.272, respectively. We used that 
information to fit the parameters of the following label mapping 
function 

���� = �
�NFGH �-���-g��                                                               (19)  

and we found � = 0.2641 and _ = 1.2402. The plot of this 
function is shown as the following Figure 4. 

 

 

Figure 4: The plot of the label mapping function 

  

This label mapping function was used to transform the raw labels 
of the training set into values between 0 and 1 to approximate the 
true probabilistic target so that the generalized loss function �  in 
Eq. (2) can be constructed from the training set. Note that we don’t 

transform the raw labels of the test set since we use the raw labels 
in the test set for evaluation. Consequently, the pairs in the training 
set for our model have the label gains as the mapped values and the 
pairs in the test set for all methods have the label gains as the 
original numbers of people who clicked. 

5.3 Model Setting 
As in the previous work in [13], for both the embedding functions 
\ and ], we adopted the neural network structure that is illustrated 
in the following Figure 5: 

 

 

Figure 5: The neural network structure of the embedding 
functions. There are four layers. The input layer corresponds to 
the LTG-vector representation of the raw text stream. The output 
layer corresponds to the vector in the semantic space. There are 
two intermediate layers of dimension 300. 

 

Note that the input layer is the LTG based vector representation. 
The mapping from the raw input text steam to the LTG-vector is 
found by hashing and is fixed throughout the model training. The 
model was trained by using the mini-batch version of the stochastic 
gradient descent method [3]. Each mini-batch consists of 1024 
randomly selected training instances. The learning rate is adaptive 
with initial value 0.5. For the softmax function, we set T = 10 and 

V = 4. 

5.4 Comparison Setting 
We compared our new model with the generalized loss function �  
in Eq. (2) against two sets of baseline models. The first baseline is 
DSSM with the loss function �� in Eq. (1). Since DSSM with the 
loss function �� has already been compared to a lot of benchmarks, 
we provided additional benchmarks for comparison as the second 
set of baselines: one is the BM25F [18], which is an unsupervised 
learning algorithm; the other is LambdaMart, which is a widely 
used supervised learning algorithm and it generates a model in a 
form of gradient boosted decision trees. To use the LambdaMart 
algorithm, we manually generated about 2,000 term or lexical 
matching features. 

To be consistent with the previous work such as [13][20], all 
models in this study are trained from the clicked pairs in the training 
set. Since there are only 106,285 clicked pairs in the training set, 
for training DSSM and our new model, we took the model produced 
by Huang et al. [13] as the seed one and tuned its parameters using 
the 106,285 clicked pairs of the training data. The seed model has 
the same neural network structure and was trained from the clicked 
pairs of a large set of query logs of the Bing search. The loss 
function for training the seed model is the same as �� in Eq. (1), 
and the seed model is denoted as Seed_DSSM. The DSSM model 
(denoted as DSSM) and our new model with generalized loss 
function (denoted as GDSSM) were obtained by tuning the seed 

300 

b5�=�: LTG-vector of � or � 

b5��� 

b5� � 

b5�r�: B5�K� or B5�L� 

50k 

500k Raw text stream 

300 

Fixed mapping 

128 

Λ�K� or Λ�L� 



model under the loss functions �� in Eq. (1) and �  in Eq. (2), 
respectively. 

For the LambdaMart algorithm, we designed two versions of 
experiments depending on what features are used. One version only 
uses the manually generated term or lexical match features, and it’s 
denoted as LM_base. The other version uses both the term or lexical 
match features and the semantic similarity feature generated by our 
model, and it’s denoted as LM_GDSSM. It’s very interesting to see 
whether there is significant performance lift if the semantic 
similarity score computed from our new model is added as a new 
feature. To train a model using the LambdaMart algorithm, we used 
the raw labels other than mapped labels since the LabmdaMart can 
take integers as target labels. 

Each trained model is called a ranker in this paper. All of BM25F, 
DSSM and GDSSM served as single feature rankers since their 
values directly decide the ranking order, whereas the counterparts 
of LambdaMart models LM_base and LM_GDSSM are referred as 
multi-feature rankers since they combine multiple features. After 
using each model to score the (query, movie)-pairs in the test set, 

we calculated NDCGzzzzzzzz� (average NDCG of the top 	 positions) for 	 =
1,3,10 and Recallzzzzzzzz�r (average top-3’s recall at the top 	 positions) for 

	 = 3,6,10. In the end, the recentness is an important factor to 
decide the appropriate ranking order of movies, therefore we also 
built simple linear regression models to combine the rankers’ 
prediction with the recentness signal to see if we can further 
improve the performance. 

5.5 Results 
The test results were summarized in the following Tables 2-5. From 
the tests for single feature rankers, it is shown that GDSSM does 
have superior performance over DSSM, Seed_DSSM, and BMF25 
with respect to both the NDCG and the recall metrics. It’s 
interesting to observe that the overall order of the single feature 
rankers’ NDCG and recall performance is GDSSM > DSSM > 
BMF25 > Seed_DSSM. The reason why Seed_DSSM is the worst 
is because it was trained from the context of web search, while the 
other three were trained from the specific context of movie search. 
The fact that GDSSM is significantly better than DSSM shows that 
fine-grained relevance label structure is very helpful for capturing 
the subtle relevance differences between various documents under 
the same query, which in turn leads to the performance 
improvement. 

Regarding the multi-feature rankers, LM_GDSSM is significantly 
better than LM_base in both the NDCG and the recall values. That 
is to say, adding the score computed from GDSSM as a semantic 
similarity feature to LambdaMart that only uses term or lexical 
match features can boost the performance. 

We can see that the multi-feature ranker LM_base achieves better 
NDCG values than single feature ranker GDSSM (please refer to 
Tables 2 and 4) but GDSSM has better recall values (please refer 
to Tables 3 and 5). The main reason why LM_base beats GDSSM 

in NDCG measures is that the LambdaMart was designed for 
optimizing NDCG directly [4] and the NDCG measurement 
emphasizes the top few results, while our new model and DSSM 
optimize the similarity between the query and document in a 
semantic space but the relative order of the documents under the 
same query is not directly reflected in the objective functions. 

The observation that GDSSM has better recall values compared to 
LM_base implies that term or lexical matching based retrieval 
could miss important semantically matched contents. Therefore it 
is not surprising to see LM_GDSSM that combines both the term 

or lexical matches and the semantic matches yields further 
performance lift. 

 

Table 2: The single-feature rankers’ NDCG performance 

 Without recentness adjust. With recentness adjust.  

Average NDCG@i i=1 i = 3 i = 10 i = 1 i = 3 i = 10  

BM25F 0.6296 0.7116 0.7718 0.5740 0.6805 0.7465  

Seed_DSSM 0.4502 0.6000 0.6887 0.4435 0.5977 0.6861  

DSSM 0.5875 0.7186 0.7820 0.6127 0.7386 0.7977  

GDSSM 0.7265 0.8107 0.8528 0.7508 0.8260 0.8657  

 

Table 3: The single-feature rankers’ recall performance 

 Without recentness adjust. With recentness adjust. 

Average top 3 recall@i i = 3 i = 6 i = 10 i = 3 i = 6 i = 10 

BM25F 0.5589 0.7603 0.8420 0.5620 0.7657 0.8476 

Seed_DSSM 0.5285 0.7491 0.8371 0.5375 0.7575 0.8448 

DSSM 0.5910 0.7996 0.8771 0.6001 0.8077 0.8837 

GDSSM 0.6243 0.8235 0.8899 0.6322 0.8271 0.8950 

 

Table 4: The multi-feature rankers’ NDCG performance 

 Without recentness adjust. With recentness adjust. 

Average NDCG@i i = 1 i = 3 i = 10 i = 1 i = 3 i = 10 

LM_base 0.7921 0.8263 0.8638 0.8006 0.8346 0.8719 

LM_GDSSM 0.8261 0.8647 0.8957 0.8285 0.8685 0.8983 

Improvement 4.29% 4.65% 3.69% 3.49% 4.06% 3.03% 

 

Table 5: The multi-feature rankers’ recall performance 

 Without recentness adjust. With recentness adjust. 

Average top 3 recall@i i = 3 i = 6 i = 10 i = 3 i = 6 i = 10 

LM_base 0.6115 0.7963 0.8697 0.6165 0.8071 0.8786 

LM_GDSSM 0.6430 0.8346 0.8965 0.6448 0.8343 0.8989 

Improvement 5.16% 4.80% 3.08% 4.60% 3.37% 2.31% 

 

6. CONCLUSION  
In this paper, we have introduced the generalized loss function �  
in Eq. (2) for the semantic similarity models that have neural 
network structures. It’s motivated by the fact that for data with a 
fine-grained target structure, it’s possible to build better labels to 
improve the prediction. We analyzed the generalized loss function 
and pointed out that label improvement can make considerable 
contribution toward reducing the discrepancy between the 
prediction and the true target. We trained models and performed 
extensive experiments using the Xbox One’s logs on movie search. 
We found evidence that the generalized loss function is 
significantly better than the original loss function, and other 
benchmarks, measured by the NDCG and recall metrics. 

We also compared our new model GDSSM with the generalized 
loss function �  against the current widely used search ranking 
algorithm LambdaMart that uses thousands of manually generated 
term or lexical match features and found that our new model has 
better recall performance. Moreover, by adding the similarity score 
computed from our new model to the LambdaMart as a semantic 
match feature, significant performance lift is achieved in both 
NDCG and recall measurements. These results are encouraging 
since they indicate some progress in saving the engineering efforts 
of manually building features.   

As for future work, we suggest adding more structure(s) to the 
architecture of our new model GDSSM to enrich the feature 
generation from the input layer. It will be very interesting to 
compare these new type of models to the LambdaMart that uses 
both the term or lexical matching features and the semantic 
matching features. 



7. ACKNOWLEDGMENTS 
We sincerely thank those colleagues who provided data and 
computing recourses. The data was processed on Microsoft’s 
Cosmos and the models were trained using both the GPU and CPU 
clusters. 

REFERENCES 
[1] Y. Bengio. Learning Deep Architectures for AI. In 

Foundations and Trends in Machine Learning, vol. 2, pages 
1-127, 2009. 

[2] D. M. Blei, A. Y. Ng and M. J. Jordan . Latent Dirichlet 
Allocation.  In JMLR, vol. 3, 2003. 

[3] L. Bottou. Large-scale machine learning with stochastic 
gradient descent. In Proceedings of COMPSTAT'2010, pages 
177-186, 2010. 

[4] C. Burges. From RankNet to LambdaMart to 
LambdaMART: An Overview. Technical Report, No. MSR-
TR-2010-82, 2010. 

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. 
Kavukcuoglu and P. P. Kuksa. Natural Language Processing 
(Almost) from Scratch. In JMLR, vol. 12, pages 2493-2537, 
2011. 

[6] Z. Dou, R. Song, X. Yuan and J. Wen. Are click-through 
data adequate for learning web search rankings? In CIKM, 
pages 73-82, 2008. 

[7] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas 
and R. A. Harshman. Indexing by Latent Semantic Analysis. 
In J. American Society for Information Science, 41(6): 391-
407, 1990. 

[8] S. T. Dumais, T. A.Letsche, M. L. Littman and T. K. 
Landauer. Automatic Cross-linguistic Information Retrieval 
Using Latent Semantic Indexing. In AAAI-97 Spring 
Symposium Series: Cross-Language Text and Speech 
Retrieval, 1997. 

[9] J. Gao, K. Toutanova and W. Yih. Clickthrough-based Latent 
Semantic Models for Web Search. In SIGIR, pages 675-684, 
2011. 

[10] J. Gao, X. He, W. Yih and L. Deng. Learning Continuous 
Phrase Representations for Translation Modeling. In ACL, 
pages 699-709, 2014. 

[11] M. Girolami and A. Kaban. On an equivalence between 
PLSA and LDA. In SIGIR, pages 433-434, 2003. 

[12] T. Hofmann. Probabilistic latent semantic indexing. In 
SIGIR, pages 50-57, 1999. 

[13] P. Huang, X. He, J. Gao, L. Deng, A. Acero and L. Heck. 
Learning deep structured semantic models for web search 
using clickthrough data. In CIKM, pages 2333--2338, 2013. 

[14] K. Jarvelin and J. Kekalainen. IR evaluation methods for 
retrieving highly relevant documents. In SIGIR, pages 41-48, 
2000. 

[15] S. Kullback and R.A. Leibler. On Information and 
Sufficiency. Annals of Mathematical Statistics 22 (1): 79–86, 
1951. 

[16] G. Mesnil, X. He, L. Deng and Y. Bengio. Investigation of 
recurrent-neural-network architectures and learning methods 
for spoken language understanding. In INTERSPEECH, 
pages 3771-3775, 2013. 

[17] J. Platt, K. Toutanova and W. Yih. Translingual Document 
Representations from Discriminative Projections. In 
EMNLP, pages 251-261, 2010. 

[18] S. E. Robertson and H. Zaragoza. The Probabilistic 
Relevance Framework: BM25 and Beyond. In Foundations 
and Trends in Information Retrieval, 3(4): 333-389, 2009. 

[19] R. Salakhutdinov and G. Hinton. Semantic Hashing. In Proc. 
SIGIR Workshop Information Retrieval and Applications of 
Graphical Models, 2007. 

[20] Y. Shen, X. He, J. Gao, L. Deng and G. Mesnil. A Latent 
Semantic Model with Convolutional-Pooling Structure for 
Information Retrieval. In CIKM, pages 101-110, 2014. 

[21] X. Song, X. He, J. Gao and L. Deng. Unsupervised Learning 
of Word Semantic Embedding using the Deep Structured 
Semantic Model. Technical Report, No. MSR-TR-2014-109, 
2014. 

[22] W. Yih, X. He and C. Meek. Semantic Parsing for Single-
Relation Question Answering. In ACL, pages 643-648, 2014.

 


