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High-Dimensional Data

* In many areas, we deal with high-dimensional data

Signal processing
Speech processing
Computer vision
Medical imaging
Medical robotics
Bioinformatics

The Language of Surgery

Modeling the skills of human expert surgeons
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Low Rank Modeling

« Models involving factorization are ubiquitous
— PCA
— Nonnegative Matrix Factorization
— Dictionary Learning
— Matrix Completion
— Robust PCA

Face clustering and classification Affine structure from motion
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Convex Formulations of Matrix Factorization

e (1% = Y ou(x)
min [V — XI[% + N X5

* Nuclear Norm Matrix Approximation

* Robust Principal Component Analysis

min [|Y — X|1 + X || X||«
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http://perception.csl.illinois.edu/matrix-rank/home.html

Non-Convex Formul. of Matrix Factorization

* Principal Component Analysis

min|[|[Y —UV'||% st. U'U=1I
U,v

* Nonnegative Matrix Factorization

min ¥ - UV'|I|%2 st. U>0,V >0

« Sparse Dictionary Learning

min [|[Y —UV ' |5 s.t.
U,V




Typical Low-Rank Formulations

« Convex formulations » Factorized formulations
min /(Y, X) +A\0(X) minl(Y,UV ")+ O(U,V)
X U,V
—
X V
— Robust PCA — Nonnegative matrix factorization
— Matrix completion — Dictionary learning
« Convex * Non-Convex
* Large problem size * Small problem size

« Unstructured factors e Structured factors




Why Do We Need Structured Factors?

- Given a low-rank video Y € RP*! m)}n 1Y — X ||1 + A|| X«

(a) Original frames (b) Low-rank L

(c) Sparse S
min (Y, V') 4+ 20U, V)
» U: spatial basis
— Low total-variation
— Non-negative

« V:temporal basis
— Sparse on particular basis set
— Non-negative

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Why Do We Need Structured Factors?

* Nonnegative matrix factorization

min ¥ - UV'|% st. U>0,V >0

« Sparse dictionary learning

min [V —UVT[3 st Ul <1, [[Villo < r

« Challenges to state-of-the-art methods
— Need to pick size of U and V a priori

— Alternate between U and V, without guarantees of convergence to a
global minimum




Why do We Care About Convexity?

Convex f = x™x + y'y Convex (degenerate) f = x*x

Concave f= =x*x — y*y
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http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optqp_sect001.htm
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Contributions

min £(Y, UV 4+ 20U, V)

e Assumptions:
~ U(Y, X): convex and once differentiable in X
— © : sum of positively homogeneous functions of degree 2

flaX', ..., aX®) =P f(X', ..., X") VYa>0

 Theorem 1: Alocal minimizer (U,V) such that for some j
U, =V, =0 isaglobal minimizer

 Theorem 2: If the size of the factors is large enough, local
descent can reach a global minimizer from any initialization




Contributions

min £(Y, UV'")+X0(U,V)

e Assumptions:
~ 4(Y, X): convex and once differentiable in X
— © : sum of positively homogeneous functions of degree 2

flaX', ..., aX®) =P f(X', ..., X") VYa>0

* Theorem 2:

Critical Points of Non-Convex Function Guarantees of Our Framework




Tackling Non-Convexity: Nuclear Norm Case

« Convex problem Factorized problem
min (Y, X) + A|X]. min (Y, UV +X0(U,V)
 Variational form of the nuclear norm
 r )
| X1l = min E_; \Uz-!z\v;-bj st. UV =X

« Theorem: Assume loss ¢ is convex and once differentiable in
X. A local minimizer of the factorized problem such that for
some i U; = V; = 0 is a global minimizer of both problems

e Intuition: regularizer © “comes from a convex function”




Tackling Non-Convexity: Nuclear Norm Case

« Convex problem Factorized problem

m)}nE(Y, X) + M| X« rlgli‘;lﬁ(Y, UvV"')+X0(U, V)
| T |
« Theorem: Assume loss /¢ is convex and once differentiable in

X. A local minimizer of the factorized problem such that for
some i U; = V; = 0 is a global minimizer of both problems




Tackling Non-Convexity: Tensor Norm Case

* A natural generalization Is the projective tensor norm [1,2]

HXHuv_mmZHUHuHVHU st. UV =X

 Theorem 1 [3,4]: A local minimizer of the factorized problem

T . .
%u‘;w(y UV’ + )\Z Uil Villo

such that for some i U; = V; = 0, is a global minimizer of
both the factorized problem and of the convex problem

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008.

[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.

[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML '14
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Tackling Non-Convexity: Tensor Norm Case

 Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Critical Points of Non-Convex Function Guarantees of Our Framework

 Meta-Algorithm:
— If not at a local minima, perform local descent to reach a local minima
— If optimality condition is satisfied, then local minima is global
— If condition fails, choose descent direction (u,v), and set

rr+1 U<+ U u| V|V v

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Optimization

. T ' .
min (Y, UV >+A;HU@HUHV@HU

« Convex in U given V and vice versa

« Alternating proximal gradient descent
— Calculate gradient of smooth term
— Compute proximal operator
— Acceleration via extrapolation

 Advantages
— Easy to implement
— Highly parallelizable
— Guaranteed convergence to Nash equilibrium (may not be local min)




Example: Nonnegative Matrix Factorization

 QOriginal formulation

min ¥ - UV'|I|IZ2 st. U>0,V>0

 New factorized formulation

%11‘51 Y —UV'||E + AZ Uil2|Vil2 st. U,V >0

— Note: regularization limits the number of columns in (U,V)




Example: Sparse Dictionary Learning

 QOriginal formulation

min||[V —UVT 3 st [Uills < 1, [[Villo < r

 New factorized formulation

. T2 | . .
min |y — UV ||F+AZ:\UZ\2(M!2+’VMI1)




Non Example: Robust PCA

* Original formulation [1]

min || B, + A X[, st. YV =X4E
X.E

« Equivalent formulation

min [[Y" = Xly + A Xl

 New factorized formulation

mmﬂY (ﬂﬂm1+x§:um|vb

* Not an example because loss is not dn‘ferenhable

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.




Find neuronal shapes and spike trains in calcium imaging

min [|Y" — UV IE+ 2> NUillulVillo
1=1 Ul UQ

Neuron Shape

Data l\ |\ I\
UVT

True Signal

Spike Times ‘ Vl ‘ ‘VQ
> >

Time Time
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min [[Y — @OV )[[E + A Y |Uilull Vil
’ i=1

=1 le+ 1 |l1+]

60 microns ‘
|

Raw Data Sparse + Low Rank +Total Variation
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. PCA Mean Fluoresoence - Feature obtained by PCA

™
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— Sensitive to noise
— Hard to interpret

* Proposed method Example Image Frames Features by Our Method

— Found 46/48
manually identified
active regions

— Features are easy
to interpret

— Minimal post-
processing for
segmentation

@iicing



Manual

Sparse

Sparse +
Low-Rank %

Sparse +
Low-Rank + TV %




Hyperspectral Compressed Recovery

- Y e RP*': hyperspectral image of a certain area at multiple
(t>100) wavelengths of light

» Different regions in space
correspond to different materials
— rank(Y) = number of materials

« U: spatial features
— Low total-variation
— Non-negative

» V: spectral features

_ Non-negative %1151 (Y, UV ")+ X6(U,V)

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.




Hyperspectral Compressed Recovery

* Prior method: NucTV (Golbabaee et al., 2012)

t
min [ X, + A IXillry st [IY = @(X)[[E < e
1=1

* 180 Wavelengths
« 256 x 256 Images

« Computation per lteration
— SVT of whole image volume
— 180 TV Proximal Operators
— Projection onto Constraint Set




Hyperspectral Compressed Recovery

Our method

min [}y — Q(UV') HF+AZHUH Vil

(U,V) have 15 columns
Problem size reduced by 91.6%

Computation per lteration
— Calculate gradient
— 15 TV Proximal Operators

Random Initializations




Hyperspectral Compressed Recovery

Reconstruction Error
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0.15

0.1
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HXt’rue — UVTHF
HXt’rueHF
lSNR _
NucTV
= Our Method

16:1 32:1
Subsampling Ratio

64:1

128:1




Conclussions

» Structured Low Rank Matrix Factorization
— Structure on the factors captured by the Projective Tensor Norm
— Efficient optimization for Large Scale Problems

« Local minima of the non-convex factorized form are global
minima of both the convex and non-convex forms

« Advantages in Applications
— Neural calcium image segmentation
— Compressed recovery of hyperspectral images
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More Information,

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Thank You!



http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php

