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High-Dimensional Data
• In many areas, we deal with high-dimensional data 

– Signal processing 
– Speech processing 
– Computer vision 
– Medical imaging 
– Medical robotics 
– Bioinformatics



Low Rank Modeling
• Models involving factorization are ubiquitous 

– PCA 
– Nonnegative Matrix Factorization  
– Dictionary Learning 
– Matrix Completion 
– Robust PCA

S2S1

Face clustering and classification Affine structure from motion



Convex Formulations of Matrix Factorization
• Nuclear Norm Matrix Approximation 

• Robust Principal Component Analysis

http://perception.csl.illinois.edu/matrix-rank/home.html
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This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
engineering problems where our techniques have been used to achieve state-of-the-art performance. 

Credits

This website is maintained by the research group of Prof. Yi Ma at the University of Illinois at Urbana-Champaign. This
work was partially supported by the grants: NSF IIS 08-49292, NSF ECCS 07-01676, ONR N00014-09-1-0230, ONR
N00014-09-1-0230, NSF CCF 09-64215, NSF ECCS 07-01676, and NSF IIS 11-16012. Any opinions, findings, and
conclusions or recommendations expressed in our publications are those of the respective authors and do not necessarily
reflect the views of the National Science Foundation or Office of Naval Research.

Please direct your comments and questions to the webmaster - Kerui Min.
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Non-Convex Formul. of Matrix Factorization
• Principal Component Analysis 

• Nonnegative Matrix Factorization 

• Sparse Dictionary Learning

min
U,V

kY � UV >k2F s.t. U � 0, V � 0
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Typical Low-Rank Formulations
• Convex formulations 

– Robust PCA 
– Matrix completion 

• Convex 
• Large problem size 
• Unstructured factors

• Factorized formulations 

– Nonnegative matrix factorization 
– Dictionary learning 

• Non-Convex 
• Small problem size 
• Structured factors

X U V >
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Typical Low Rank Formulations
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Why Do We Need Structured Factors?
• Given a low-rank video 

• U: spatial basis 
– Low total-variation 
– Non-negative

• V: temporal basis 
– Sparse on particular basis set 
– Non-negative 

(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n

1

.13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/

~

ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n
1

).
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Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Why Do We Need Structured Factors?
• Nonnegative matrix factorization 

• Sparse dictionary learning 

• Challenges to state-of-the-art methods  
– Need to pick size of U and V a priori 
– Alternate between U and V, without guarantees of convergence to a 

global minimum

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r



Why do We Care About Convexity?

• A local minimizer of a convex problem is a global minimizer.
http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optqp_sect001.htm

http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optqp_sect001.htm


Why is Non Convexity a Problem?



Contributions

• Assumptions: 
–                 : convex and once differentiable in 
–       : sum of positively homogeneous functions of degree 2 

• Theorem 1: A local minimizer (U,V) such that for some i  
                          is a global minimizer 

• Theorem 2: If the size of the factors is large enough, local 
descent can reach a global minimizer from any initialization 

⇥
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Contributions

• Assumptions: 
–                 : convex and once differentiable in 
–       : sum of positively homogeneous functions of degree 2 

• Theorem 2:
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CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.

88
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Tackling Non-Convexity: Nuclear Norm Case
• Convex problem                     Factorized problem 

• Variational form of the nuclear norm 

• Theorem: Assume loss    is convex and once differentiable in 
X. A local minimizer of the factorized problem such that for 
some i                         is a global minimizer of both problems 

• Intuition: regularizer      “comes from a convex function”

Ui = Vi = 0

⇥

min
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`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )
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Tackling Non-Convexity: Nuclear Norm Case
• Convex problem                     Factorized problem 

• Theorem: Assume loss    is convex and once differentiable in 
X. A local minimizer of the factorized problem such that for 
some i                         is a global minimizer of both problemsUi = Vi = 0

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

`

X U V >



Tackling Non-Convexity: Tensor Norm Case
• A natural generalization is the projective tensor norm [1,2] 

• Theorem 1 [3,4]: A local minimizer of the factorized problem 
 
 
 
 
such that for some i                        , is a global minimizer of 
both the factorized problem and of the convex problem

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. 
[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Tackling Non-Convexity: Tensor Norm Case
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent to reach a local minima 
– If optimality condition is satisfied, then local minima is global 
– If condition fails, choose descent direction (u,v), and set

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework
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- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).
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[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Optimization

• Convex in U given V and vice versa 

• Alternating proximal gradient descent 
– Calculate gradient of smooth term 
– Compute proximal operator 
– Acceleration via extrapolation 

• Advantages 
– Easy to implement 
– Highly parallelizable 
– Guaranteed convergence to Nash equilibrium (may not be local min)

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv



Example: Nonnegative Matrix Factorization
• Original formulation 

• New factorized formulation 

– Note: regularization limits the number of columns in (U,V)

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F + �
X

i

|Ui|2|Vi|2 s.t. U, V � 0



Example: Sparse Dictionary Learning
• Original formulation 

• New factorized formulation

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

kY � UV >k2F + �
X

i

|Ui|2(|Vi|2 + �|Vi|1)



Non Example: Robust PCA
• Original formulation [1] 

• Equivalent formulation 

• New factorized formulation 

• Not an example because loss is not differentiable

min
X,E

kEk1 + �kXk⇤ s.t. Y = X + E

min
X

kY �Xk1 + �kXk⇤

min
U,V

kY � UV >k1 + �
X

i

|Ui|2|Vi|2

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.



Neural Calcium Image Segmentation
• Find neuronal shapes and spike trains in calcium imaging

Data
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Spike Times
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Why Do We Need Structure?
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Neural Calcium Image Segmentation
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kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)
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In Vivo Results (Small Area)

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

Raw Data Sparse + Low Rank +Total Variation

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

60 microns



In Vivo Results
• PCA 

– Sensitive to noise 
– Hard to interpret 

• Proposed method 
– Found 46/48 

manually identified 
active regions 

– Features are easy 
to interpret 

– Minimal post-
processing for 
segmentation 

Features by Our MethodExample Image Frames

Mean Fluorescence Feature obtained by PCA



Neural Calcium Image Segmentation



Hyperspectral Compressed Recovery
•                : hyperspectral image of a certain area at multiple 

(t>100) wavelengths of light 

• Different regions in space  
correspond to different materials 
– rank(Y) = number of materials 

• U: spatial features 
– Low total-variation 
– Non-negative 

• V: spectral features 
– Non-negative

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Hyperspectral Compressed Recovery
• Prior method: NucTV (Golbabaee et al., 2012) 

• 180 Wavelengths 
• 256 x 256 Images 
• Computation per Iteration 

– SVT of whole image volume 
– 180 TV Proximal Operators 
– Projection onto Constraint Set

Hyperspectral Compressed Recovery

min
X

kXk⇤ + �
tX

i=1

kXikTV s.t. kY � �(X)k2F  ✏ (7)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(8)



Hyperspectral Compressed Recovery
• Our method 

• (U,V) have 15 columns 
• Problem size reduced by 91.6% 
• Computation per Iteration 

– Calculate gradient 
– 15 TV Proximal Operators 

• Random Initializations

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)
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(6)



Hyperspectral Compressed Recovery

Hyperspectral Compressed Recovery

min
X

kXk⇤ + �
tX

i=1

kXikTV s.t. kY � �(X)k2F  ✏ (7)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(8)

kXtrue � UV >kF
kXtruekF

(9)



Conclussions
• Structured Low Rank Matrix Factorization 

– Structure on the factors captured by the Projective Tensor Norm 
– Efficient optimization for Large Scale Problems 

• Local minima of the non-convex factorized form are global 
minima of both the convex and non-convex forms 

• Advantages in Applications 
– Neural calcium image segmentation  
– Compressed recovery of hyperspectral images



• Body Level One 
– Body Level Two 

• Body Level Three 
– Body Level Four 

» Body Level Five

• PhD Students 
– Ben Haeffele, JHU
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More Information,

Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 

Center for Imaging Science @ Johns Hopkins University 
http://www.cis.jhu.edu 

Thank You!

http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php

