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Abstract— This tutorial paper is concerned with the identifi-
cation of hybrid models, i.e. dynamical models whose behavior
is determined by interacting continuous and discrete dynamics.
Methods specifically aimed at the identification of models with
a hybrid structure are of very recent date. After discussing
the main issues and difficulties connected with hybrid system
identification, and giving an overview of the related literature,
this paper focuses on four different approaches for the identi-
fication of switched affine and piecewise affine models, namely
an algebraic procedure, a Bayesian procedure, a clustering-
based procedure, and a bounded-error procedure. The main
features of the selected procedures are presented, and possible
interactions to still enhance their effectiveness are suggested.

I. INTRODUCTION

Hybrid systems are heterogeneous dynamical systems whose
behavior is determined by interacting continuous and discrete
dynamics. The continuous dynamics is described by variables
taking values from a continuous set, while the discrete
dynamics is described by variables taking values from a
discrete, typically finite, set. The continuous or discrete-
valued variables may depend on independent variables such
as time, which in turn may be continuous or discrete. Some
of the variables can also be discrete-event driven in an
asynchronous manner.

Hybrid systems arise not only from the interaction of
logic devices and continuous processes. They can be used
to describe real phenomena that exhibit discontinuous be-
haviors. For instance, the trajectory of a bouncing ball
results from the alternation between free fall and elastic
contact. Moreover, hybrid models can be used to approximate
continuous phenomena by concatenating different models
from a simple class. For instance, a nonlinear dynamical
system can be approximated by switching among various
linear models.

Due to their many potential applications, hybrid systems
have attracted increasing attention in the control commu-
nity during the last decade. Numerous results on analysis,
verification, computation, stability and control of hybrid
systems have appeared in the literature. However, most of
the theoretical developments hinge on the assumption that a
hybrid model of the process at hand is available. In some
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situations it is possible to obtain such a model starting from
first principles. On the other hand, first principles modelling
is too complicated or even impossible to apply in most
practical situations, and the model needs to be identified on
the basis of experimental data.

A. Paper contribution

In the first part, this paper introduces the topic of hybrid
system identification by focusing in particular on the iden-
tification of switched affine and PieceWise Affine (PWA)
models. PWA systems are a class of hybrid systems ob-
tained by partitioning the state-input domain into a finite
number of non-overlapping convex polyhedral regions, and
by considering linear/affine subsystems in each region [66].
Since PWA models are equivalent to several classes of hybrid
models [4], [34], [67], PWA system identification techniques
are suitable to obtain hybrid models from data. Moreover,
the universal approximation properties of PWA maps [14],
[49] make PWA models attractive also for nonlinear system
identification [64].

Identification of PWA models is a challenging problem
that involves the estimation of both the parameters of the
affine submodels, and the coefficients of the hyperplanes
defining the partition of the state-input domain (or the
regressors domain, for models in input-output form). The
main difficulty lies in the fact that the identification problem
includes a classification problem where each data point must
be associated to the most suitable submodel. Concerning the
partitioning, two alternative approaches can be distinguished:

1) the partition is fixed a priori;
2) the partition is estimated along with the submodels.

In the first case, data classification is very simple, and
estimation of the submodels can be carried out by resorting to
standard linear identification techniques. In the second case,
the regions must be shaped to the clusters of data, and the
strict relation among data classification, parameter estimation
and region estimation makes the identification problem very
hard to cope with. The problem is even harder when also the
number of submodels must be estimated.

Different techniques leading to PWA models of smooth
dynamical systems can be found in the extensive literature
on nonlinear black-box identification. A nice overview is
presented in [61]. However, most of these approaches assume
that the system dynamics is continuous. Recently, novel
contributions allowing for discontinuities have been proposed
in both the hybrid systems and the nonlinear identification
communities. An iterative algorithm that sequentially esti-
mates the parameters of the model and classifies the data
through the use of adapted weights is described in [60]. A



method based on statistical clustering of measured data via a
Gaussian mixture model and support vector classifiers is pre-
sented in [56]. Several optimization problem formulations of
the identification problem are proposed in [54], [55]. In [62]
the identification problem is formulated for two subclasses of
PWA models, namely Hinging Hyperplane ARX (HHARX)
and Wiener PWARX (W-PWARX) models, and solved via
mixed-integer linear or quadratic programs. Subspace identi-
fication of piecewise linear systems is addressed in [10], [71],
while recursive identification of switched hybrid systems is
addressed in [32], [75].

Among the proposed approaches, contributions of the
authors of this paper are represented by four different pro-
cedures for the identification of switched affine and piece-
wise affine models, namely the algebraic procedure [78],
the clustering-based procedure [27], the Bayesian procedure
[47], and the bounded-error procedure [5]. These techniques
have been successfully applied in several real problems, such
as the identification of the electronic component placement
process in pick-and-place machines [5], [43], [47], the mod-
elling of a current transformer [27], traction control [11],
and motion segmentation in computer vision [76], [77]. The
main features of the selected techniques are summarized in
the second part of the paper. Possible interactions to still
enhance their effectiveness are also suggested.

B. Paper outline

This paper is organized as follows. Section II introduces
the classes of switched affine and piecewise affine models,
both in state space and input-output form. Section III reports
several formulations of the identification problem for these
model classes, and presents an overview of the related
literature. Different identification approaches are classified
along the lines proposed in [61]. The problems of data classi-
fication and region estimation are addressed in Section IV for
those approaches that firstly classify the data, then estimate
the affine dynamics, and finally reconstruct the polyhedral
partition. Most recent contributions for the identification of
models with hybrid and discontinuous characteristics belong
to this category. Four procedures falling into the category
analyzed in Section IV, are finally described and discussed
in Section V. Section VI draws the conclusions, and fore-
shadows interesting topics for future research.

II. SWITCHED AFFINE AND PIECEWISE AFFINE MODELS

Switched affine models are defined as collections of lin-
ear/affine models, connected by switches that are indexed
by a discrete-valued additional variable, called the discrete
state. Models for which the discrete state is determined by
a polyhedral partition of the state-input domain, are called
piecewise affine models. They can be used to model a large
number of physical processes (see, e.g. [3], [17], [18], [48],
[69]), and are suitable to approximate virtually any nonlinear
dynamics, e.g., via multiple linearizations at different operat-
ing points. Moreover, piecewise affine models are equivalent
to several classes of hybrid models, and can therefore be
used to describe systems exhibiting hybrid structure.

A. Models in state space form

A discrete-time switched affine model in state space form is
described by the equations

xk+1 = Aσ(k) xk + Bσ(k) uk + fσ(k) + wk

yk = Cσ(k) xk + Dσ(k) uk + gσ(k) + vk,
(1)

where xk ∈ Rn, uk ∈ Rp and yk ∈ Rq are, respectively, the
(continuous) state, the input and the output of the system at
time k ∈ Z, and wk ∈ Rn and vk ∈ Rq are noise/error
terms. The discrete state σ(k), describing in what affine
dynamics the system is at time k, is assumed to take only
a finite number of values, i.e. σ(k) ∈

{

1, . . . , s
}

, where
s is the number of affine submodels. In general, σ(k) can
be a function of k, xk, uk, or some other external input.
The real matrices/vectors Ai, Bi, fi, Ci, Di and gi, i =
1, . . . , s, having appropriate dimensions, describe each affine
dynamics. Hence, model (1) can be seen as a collection
of affine models with continuous state xk, connected by
switches that are indexed by the discrete state σ(k).

The evolution of the discrete state can be described in
a variety of ways. In Jump Linear (JL) models, σ(k) is
an unknown, deterministic and finite-valued input. In Jump-

Markov Linear (JML) models, the dynamics of σ(k) is
modelled as an irreducible Markov chain governed by the
transition probabilities π(i, j) ! P

(

σ(k+1) = j
∣

∣σ(k) = i
)

.
In PieceWise Affine (PWA) models [66], σ(k) is given by the
rule

σ(k) = i iff [ xk
uk

] ∈ Ωi, i = 1, . . . , s, (2)

where {Ωi}
s
i=1 is a complete partition1 of the state-input

domain Ω ⊆ Rn+p. The regions Ωi are assumed to be convex
polyhedra described by

Ωi =
{

[ x

u
] ∈ R

n+p : H̄i

[

x

u

1

]

#[i] 0
}

, (3)

where H̄i ∈ Rµ̄i×(n+p+1), i = 1, . . . , s, and µ̄i is the number
of linear inequalities defining the ith polyhedral region Ωi.
With abuse of notation, in (3) the symbol #[i] denotes a µi-
dimensional vector whose elements can be the symbols ≤
and < in order to avoid that the regions Ωi overlap over
common boundaries.

Remark 2.1: PWA models form a special class of hybrid
models. Other descriptions for hybrid systems include Mixed

Logical Dynamical (MLD) models [6], Linear Complemen-

tarity (LC) models [33], [70], Extended Linear Comple-

mentarity (ELC) models [20], and Max-Min-Plus-Scaling

(MMPS) models [21]. Equivalences among these five classes
of systems are proven in [4], [34]. Such results are very
important for transferring theoretical properties and tools
(e.g., control and identification techniques) from one class
to another, as they imply that one can choose the most
convenient hybrid modelling framework for the study of a
particular hybrid system.

1A collection {Ai}
s
i=1 is said to be a (complete) partition of A ⊆ Rm

if ∪s
i=1Ai = A and Ai ∩Aj = ∅, ∀ i &= j.



B. Models in input-output form

For fixed model orders na and nb, a Switched affine AutoRe-

gressive eXogenous (SARX) model is defined by introducing
the regression vector

rk = [ y
"
k−1 . . . y

"
k−na

u
"
k u

"
k−1 . . . u

"
k−nb

]", (4)

and then by expressing the output yk as a piecewise affine
function of rk, namely

yk = θ"σ(k) [ rk

1 ] + ek, (5)

where σ(k) ∈
{

1, . . . , s
}

is the discrete state, s is the number
of submodels, θi, i = 1, . . . , s, are the matrices of parameters
defining each submodel, and ek ∈ Rq is a noise/error term.
In the following, the vector ϕk = [ rk

1 ] will be called the
extended regression vector.

SARX models represent a subclass of the switched affine
models (1), and can be easily transformed into that form by
defining the continuous state as

xk = [ y
"
k−1 . . . y

"
k−na

u
"
k−1 . . . u

"
k−nb

]". (6)

As for the models in state space form, the evolution of the
discrete mode σ(k) can be described in a variety of ways.
In PieceWise affine AutoRegressive eXogenous (PWARX)
models the switching mechanism is determined by a poly-
hedral partition of the regressors domain R ⊆ Rd, where
d = q · na + p · (nb + 1). This means that for these models
the discrete state σ(k) is given by

σ(k) = i iff rk ∈ Ri, i = 1, . . . , s, (7)

where {Ri}
s
i=1 is a complete partition of R. Each region Ri

is a convex polyhedron described by

Ri =
{

r ∈ R
d : Hi [ r

1 ] #[i] 0
}

, (8)

where Hi ∈ Rµi×(d+1), i = 1, . . . , s, µi is the number of
linear inequalities defining the ith polyhedral region Ri and,
as in (3), the symbol #[i] denotes a µi-dimensional vector
whose elements can be the symbols ≤ and <. In general, the
shape of R reflects the physical constraints on the inputs and
the outputs of the system. For instance, typical constraints
on the output can be ‖yk‖∞ ≤ ymax or ‖yk − yk−1‖∞ ≤
∆ymax, where ‖ · ‖∞ is the infinity norm of a vector, and
ymax and ∆ymax are fixed bounds.

By introducing the piecewise affine map

f(r) =











θ"1 ϕ if H1ϕ #[1] 0

...
...

θ"s ϕ if Hsϕ #[s] 0,

(9)

with ϕ = [ r

1 ], it will be useful to rewrite the model defined
by (5), (7) and (8) as

yk = f(rk) + ek. (10)

Remark 2.2: The PWA map (9) can be discontinuous
along the boundaries defined by the polyhedra (8), as shown
in Fig. 1. Though, for the sake of simplicity, in the following
the subscript [i] will be removed from the notation #[i], one
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Fig. 1. Discontinuous PWA map of two variables with s = 3
regions.

must always take care of the definition of the regions, to
avoid that the PWA map is multiply defined over common
boundaries of the regions Ri.

III. HYBRID SYSTEM IDENTIFICATION

In this section, the identification problem will be firstly
addressed for input-output models, and then for state space
models. An overview of the related literature is finally
presented. For the sake of clarity, single input-single output
systems (i.e. p = q = 1) are considered. To this aim,
notations yk, uk and ek will be used instead of yk, uk

and ek. The discussion can be straightforwardly extended
to multi input-single output systems (i.e. p > 1 and q = 1).
Multi input-multi output systems (i.e. p > 1 and q > 1) are
also handled by state-space techniques, while in the input-
output case one can identify a model for each output by
considering the other outputs as additional inputs2.

A. Identification problem for SARX models

For SARX models (5), the general identification problem
reads as follows.

Problem 3.1: Given a collection of N input-output pairs
(yk, uk), k = 1, . . . , N , estimate the model orders na and
nb, the number of submodels s, and the parameter vectors
θi, i = 1, . . . , s. Moreover, estimate the discrete state σ(k)
for k > max{na, nb}.

If the system generating the data has the structure (5),
an exact algebraic solution to Problem 3.1 is presented in
[51], [74], [78] for the case of noiseless data (though the
approach can be amended to work also with noisy data). The
algorithm only requires to fix upper bounds n̄a, n̄b, and s̄ on
the model orders and the number of submodels, respectively.
A description of the algorithm will be given in Section V.

If the model orders are fixed, the problem is to fit the data
to s hyperplanes. This problem is addressed in the field of

2Though this approach may lead in general to a larger number of regions
than necessary, since the overall partition is obtained by intersecting the
partitions of the single models.



data analysis, and several approaches are proposed where s
is either estimated from data or fixed a priori. One way to
estimate s is by solving the following problem.

Problem 3.2: Given δ > 0, find the smallest number s of
vectors θi, i = 1, . . . , s, and a mapping k '→ σ(k) such that

|yk − ϕ"
k θσ(k)| ≤ δ (11)

for all k = n̄, . . . , N , where n̄ = max{na, nb} + 1.

Problem 3.2 consists in finding a Partition of the system
of inequalities

|yk − ϕ"
k θ| ≤ δ , k = n̄, . . . , N, (12)

into a Minimum number of Feasible Subsystems (MIN PFS
problem). The bound δ in (12) is not necessarily given a
priori (e.g., if the noise is bounded, and the bound is known),
rather it can be adjusted in order to find the desired trade off
between model accuracy and complexity. In fact, the smaller
δ, the larger is typically the number of submodels needed
to fit the data3, while on the other hand, the larger δ, the
worse is the fit, since larger errors are allowed. Figure 2
shows two typical plots of the number of submodels and the
Mean Squared Error (MSE) as a function of δ when solving
Problem 3.2 for a given data set. The choice of a suitable
δ is typically made at the knee of the s-curve, where also
the MSE is kept low. The MIN PFS problem is NP-hard,
and a suboptimal greedy randomized algorithm to tackle its
solution is proposed in [1].

If s is fixed, the well-known optimization approach used
in linear system identification (i.e. choose the parameters
of a linear model such that they minimize some prediction
error norm) can be generalized to the identification of SARX
models. Given a nonnegative function &(·), such as &(ε) = ε2

or &(ε) = |ε|, the estimation of the parameter vectors θi,
i = 1, . . . , s, and of the discrete state σ(k) can be in fact
formulated as the following optimization problem:































min
θi, χk,i

N
∑

k=n̄

s
∑

i=1

&
(

yk − ϕ"
k θi

)

χk,i

s.t.
s

∑

i=1

χk,i = 1 ∀ k

χk,i ∈ {0, 1} ∀ k, i.

(13)

In (13), each binary variable χk,i describes whether the
data point (yk, rk) is associated to the ith submodel, under
the constraint that each data point must be associated to
only one submodel. The discrete state σ(k) can be finally
reconstructed according to the rule:

σ(k) = i iff χk,i = 1. (14)

The optimization problem in (13) is a mixed integer pro-
gram that is computationally intractable, except for small
instances. In principle, branch and bound algorithms could
be applied, but the search tree increases exponentially with
the number of data N and the number of submodels s.

3In this case overfit may occur, i.e. the model adjusts to the particular
noise realization.
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Fig. 2. Number of submodels and mean squared error as a function
of δ for a data set generated by a SARX system with four discrete
states and Gaussian additive noise with zero mean and variance
σ2 = 0.1.

It is shown in [55] that (13) can be transformed into a
smooth constrained optimization problem by relaxing the
integer constraints, i.e. by requiring χk,i ∈ [0, 1], ∀ k, i. The
global optimum of the relaxed problem coincides with the
global optimum of (13). Moreover, an integer solution can be
readily obtained from the solution of the relaxed problem.
By the same reasoning, it is also shown that (13) can be
transformed into the following non-smooth unconstrained
optimization problem:

min
θi

N
∑

k=n̄

min
i=1,...,s

&
(

yk − ϕ"
k θi

)

. (15)

In order to not get trapped in a local minimum, suitable
optimization techniques must be used to tackle the solution
of the equivalent problems. It is reported in [55] that state-
of-the-art solvers, such as [38], are able to solve (15) in
reasonable time at least for sample problems.

An alternative to the formulation (13) is the clustering
algorithm proposed in [12], which groups the given data
points into s clusters by generating s planes that represent a
local solution to the non-convex problem of minimizing the
sum of squares of the 2-norm distances between each point
and a nearest plane.



B. Identification problem for PWARX models

For PWARX models defined by (5), (7) and (8), the general
identification problem reads as follows.

Problem 3.3: Given a collection of N input-output pairs
(yk, uk), k = 1, . . . , N , estimate the model orders na and
nb, the number of submodels s, the parameter vectors θi and
the regions Ri, i = 1, . . . , s.

Note that, in the case of piecewise affine models, the
partition of the regressors domain automatically implies the
estimation of the discrete state according to (7).

All techniques specifically developed for the identification
of PWARX models, assume fixed orders na and nb. The
estimation of the model orders can be based on preliminary
data analysis, and carried out by algebraic techniques such
as [51], [74], or classical model order selection techniques
(see [50]). Hence, in the following the orders na and nb are
given, and n̄ = max{na, nb} + 1.

The considered identification problem consists in finding
the PWARX model that best matches the given data accord-
ing to a specified criterion of fit. It involves the estimation
of:

• The number of discrete states s.
• The parameters θi, i = 1, . . . , s, of the affine submodels.
• The coefficients Hi, i = 1, . . . , s, of the hyperplanes

defining the partition of the regressors set.

This issue also underlies a classification problem such that
each data point is associated to one region, and to the
corresponding submodel. The simultaneous optimal estima-
tion of all the quantities mentioned above is a very hard,
computationally intractable problem. To the best of the
authors’ knowledge, no satisfactory formulation in the form
of a single optimization problem has been even provided
for it. One of the main concerns is how to choose s in a
sensible way. For instance, perfect fit is obtained by letting
s = N , i.e. one submodel per each data point, which is
clearly an inadequate solution. Penalties on increasing s
should be therefore introduced in order to keep the number of
submodels reasonably low, and to avoid overfit because the
model is given too many degrees of freedom. An additional
difficulty is how to express efficiently the constraint that the
collection

{

Ri

}s

i=1
must form a complete partition of the

regressors domain R.

The problem becomes easy if the number of discrete
states s is fixed, and the regions (8) are either known or
fixed a priori. In that case each regression vector rk can
be associated to one submodel according to (7). Hence, by
introducing the quantities

χk, i =

{

1 if rk ∈ Ri

0 otherwise
∀ k, i, (16)

the identification problem reduces to the following optimiza-
tion problem:

min
θi

1

N

N
∑

k=n̄

s
∑

i=1

&
(

yk − ϕ"
k θi

)

χk, i, (17)

y

r1

r2

y = ϕ!θ−
y = ϕ!θ+

ϕ!(θ+ − θ−) = 0

max{ϕ!θ+, ϕ!θ−}

Fig. 3. Two hinging hyperplanes y = ϕ!θ− and y = ϕ!θ+, and

the corresponding hinge function y = max{ϕ!θ+, ϕ!θ−}, where
ϕ = [ r1 r2 1 ]!.

where &(·) is a given nonnegative function. If &(ε) = ε2, (17)
is an ordinary least-squares problem in the unknowns θi.

In [61], [62] the identification problem is reformulated
for the class of Hinging-Hyperplane ARX (HHARX) models
[14], which are described by

yk = f(rk; θ) + ek

f(rk; θ) = ϕ"
k θ0 +

M
∑

i=1

σi max{ϕ"
k θi, 0},

(18)

where θ = [θ"0 θ"1 . . . θ"M ]", and σi ∈ {−1, 1} are fixed a
priori. It is easy to see that HHARX models are a subclass of
PWARX models for which the PWA map (9) is continuous.
The number of submodels s is bounded by the quantity
∑d

j=0

(

M
j

)

, which only depends on the length d of the
regression vector, and the number M of hinge functions (see
Fig. 3). The identification problem considered in [62] selects
the optimal parameter vector θ∗ by solving

θ∗ = arg min
θ

N
∑

k=n̄

|yk − f(rk; θ)|p, (19)

where p = 1 or 2. Assuming a priori known bounds
on θ (which can be taken arbitrarily large), (19) can be
reformulated as a mixed-integer linear or quadratic program
(MILP/MIQP) by introducing auxiliary continuous variables
zi(k) = max{ϕ"

k θi, 0}, and binary variables

δi(k) =

{

0 if ϕ"
k θi ≤ 0

1 otherwise.
(20)

The MILP/MIQP problems can then be solved for the global
optimum. The optimality of the described approach comes at
the cost of a theoretically very high worst-case computational
complexity, which means that it is mainly suitable for small-
scale problems (e.g., when it is very costly to obtain data).
To be able to handle somewhat larger problems, different
suboptimal approximations are proposed in [61]. Various
extensions are also possible for handling non-fixed σi, dis-
continuities, general PWARX models, etc., again at the cost
of increased computational complexity.



Most of the heuristic and suboptimal approaches that are
applicable, or at least related, to the identification of PWARX
models, either assume a fixed s, or adjust s iteratively (e.g.,
by adding one submodel at a time) in order to improve the
fit. A few techniques allow for the automatic estimation of s
from data. An overview of the related literature is presented
in Section III-D.

C. Identification problem for state space models

For switched affine models defined by (1), or piecewise affine
models defined by (1), (2) and (3), the general identification
problem reads as follows.

Problem 3.4: Given a collection of N input-output pairs
(yk, uk), k = 1, . . . , N , estimate the model order n, the num-
ber of submodels s, and the 6-tuples (Ai, Bi, fi, Ci,Di, gi),
i = 1, . . . , s. Moreover, estimate the discrete state σ(k),
k = 1, . . . , N , and, if the model is piecewise affine, the
regions Ωi, i = 1, . . . , s.

As for the models in input-output form, the difficulty of
Problem 3.4 depends on which quantities are assumed to be
known. Nevertheless, while for SARX/PWARX models the
identification problem is easy if all the quantities (including
the switching sequence) are known, and only the parameters
of the submodels must be estimated, an additional difficulty
arises when dealing with the identification of state space
models. If the switching sequence is known, the matrices of
each submodel can still be estimated by classical techniques
such as subspace identification methods. However, as pointed
out in [71], the matrices of the submodels are obtained up
to a linear state transformation. This state transformation is
different, in general, for each of the submodels. To combine
the submodels they need to be transformed into the same
state basis. In [71] it is discussed how the transitions between
the submodels can be used to this aim. The algorithm
requires a sufficiently large number of transitions for which
the states at the transition are linearly independent.

Heuristics and suboptimal techniques for the identification
of switched and piecewise affine state space models are
summarized in the next subsection.

D. Literature overview

In this subsection, an overview of different approaches to the
identification of switched affine and piecewise affine models
is presented. The description is not intended to be exhaustive,
and the interested reader is referred to [61] for additional
details. The list of references in [61] is completed here with
most recent contributions.

1) Switched affine models: Emphasis on the identification
of SARX models is put in the contributions [51], [74],
[78], where an algebraic procedure for the estimation of the
model orders, the number of discrete state and the model
parameters, is proposed. The identification of SARX models
is also considered in [58], where it is assumed that switchings
occur with a certain probability at each time step, and
[72], [73], where identification schemes for multi-mode and
Markov models are developed. Switched affine models in
state space form are considered in [10], [36], [71]. While in

[71] the discrete state is assumed to be known, and the focus
is mainly on determining the state transformations to express
all the submodels in the same state basis (see Section III-C),
in [10] the number of discrete states and the switching times
are estimated from data. In both contributions, subspace
identification techniques are used to identify the individual
submodels. In [36], the estimation of the model orders, the
number of submodels and the switching times is carried out
by embedding the input-output data into a higher dimensional
space, where the problem becomes the one of segmenting the
data into distinct subspaces.

2) Piecewise affine models: Work on regression with
PWA maps can be found in many fields, such as neural
networks, electrical networks, time-series analysis, function
approximation. Most of the related approaches assume that
the system dynamics is continuous. Indeed, enabling the esti-
mation of discontinuous models is a key feature of algorithms
specifically designed for hybrid system identification. This is
motivated by the fact that logic conditions can be represented
through discontinuities in the state-update and output maps
of the identified PWA model.

Remark 3.1: If the PWA map is assumed to be continuous,
the model parameters and the partition of the domain are not
independent. For instance, consider the PWA map (9) with
s = 2. If (9) is continuous, at the switching surface between
the two modes it must hold that θ"1 [ r

1 ] = θ"2 [ r

1 ], and hence
r must satisfy

(θ1 − θ2)
" [ r

1 ] = 0. (21)

Equation (21) defines a hyperplane which divides the domain
into two regions. Each mode of the PWA map is valid on
one side of the hyperplane. Exploiting constraints of the type
of (21) can be helpful to the identification process.

Different categories of approaches to PWA system iden-
tification can be distinguished depending on how the par-
titioning into regions is done. It follows from the discus-
sion in Section III-B that there are mainly two alternative
approaches: either the partition is defined a priori, or it is
estimated along with the different submodels.

The first approach requires to define a priori the gridding
of the domain. For instance, rectangular regions with sides
parallel to the coordinate axes are used in [9], while sim-
plices (i.e. polytopes with d + 1 corners, where d is the
dimension of the domain) are considered in [23] and [40].
This approach drastically simplifies the estimation of the
linear/affine submodels, since standard linear identification
techniques can be used to estimate the submodels, given
enough data points in each region. On the other hand, it has
the drawback that the number of regions and the need for
experimental data, grow exponentially with d. This approach
is therefore impracticable for high-dimensional systems.

The second approach consists in estimating the submodels
and the partition of the domain either simultaneously or
iteratively. This should allow for the use of fewer regions,
since the regions are shaped according to the available data.
Depending on how the partition is determined, Roll [61]



further distinguishes among four different categories of ap-
proaches.

1) The first category relies on the direct formulation of
a suitable criterion function to be minimized, such as
(19). The parameters of the affine submodels and the
coefficients of the hyperplanes defining the partition
of the domain are therefore estimated simultaneously
by minimizing the criterion function through numerical
methods (e.g., Gauss-Newton search). The algorithms
proposed in [3], [15], [29], [41], [59] fall into this
category. This way of tackling the identification prob-
lem is straightforward, but has the drawback that the
optimization algorithm may get trapped in a local
minimum. Techniques for reducing the risk of getting
stuck in a local minimum can be used, at the cost of
increased computational complexity.

2) The second category of approaches is an extension of
the first one, and gives more flexibility with respect
to the number of submodels. All parameters are iden-
tified simultaneously for a model with a very simple
partition. If the resulting model is not satisfactory, new
submodels/regions are added, in order to improve the
value of a criterion function. In other words, instead to
be solved at once, the overall identification problem is
divided into several steps, each consisting in an easier
problem to solve. The algorithms proposed in [14],
[22], [35], [37], [39] fall into this category. The algo-
rithm [14] has been analyzed in [59]. The paper [41]
also describes an iterative method for introducing new
partitions on the domain, when the error obtained is
not satisfactory. As for the first category of approaches,
there is still a risk to get stuck in a local minimum.
When adding new submodels, one should also take into
consideration the risk of overfit.

3) The third category contains a variety of approaches,
sharing the characteristic that the parameters of the
submodels and the partition of the domain are identi-
fied iteratively or in different steps, each step consider-
ing either the submodels or the regions. The algorithms
proposed in [5], [27], [47], [56], [60] start by classi-
fying the data points and estimating the linear/affine
submodels simultaneously. Then, region estimation is
carried out by resorting to standard linear separa-
tion techniques. In [54], the position of rectangular
regions is optimized one by one iteratively. Then,
each rectangular region is divided into simplices, in
which affine submodels are finally identified. In [52],
a greedy randomized adaptive search procedure is used
to iteratively and heuristically find good partitions of
the domain. Other approaches can be found in [30] and
[31].

4) The last category of approaches estimates the partition
using only information concerning the distribution of
the regression vectors, and not the corresponding out-
put values. This means that the domain is partitioned
in such a way that each region contains a suitable

number of experimental data to estimate an affine
submodel. The algorithms proposed in [16], [68] fall
into this category. The major drawback of this category
of approaches is that, without considering the output
values, a set of data which really should be associated
to the same submodel might be split arbitrarily.

It is stressed that most of the aforementioned approaches
(e.g, [3], [14], [16], [22], [29], [35], [37], [41], [59]) assume
that the system dynamics is continuous, while, e.g., [5], [27],
[47], [56], [60] allow for discontinuities. Moreover, only few
approaches (e.g., those in the second category, [5], [56], and
[26], which is an extension of [27]) estimate also the number
of submodels from data.

3) Other hybrid model classes: Recently, some contribu-
tions have focused on the class of PieceWise Output Error

(PWOE) models, which are defined by the equations

yk = wk + ek

wk = f(rk),
(22)

where f(·) is the PWA map (9), and the regression vector
rk is built as

rk = [ wk−1 . . . wk−na
uk uk−1 . . . uk−nb

]". (23)

In [63] a prediction-error minimization method for piecewise
linear output-error predictors is derived under the assumption
that the discrete state is known at each time step. Estimation
of the discrete state is made possible in [46], where a
Bayesian method for identification of PWOE models is
proposed.

4) Recursive identification approaches: All the aforemen-
tioned algorithms operate in a batch mode, i.e. the model is
identified after all the input-output data have been collected.
Since the computational complexity of batch algorithms
depends on the number of data points, such algorithms may
not be suitable for real time applications. An online algorithm
for the identification of SARX/PWARX models is proposed
in [65]. It exploits a mixture of recursive identification
and pattern recognition techniques in order to identify the
current parameter values. A different approach is pursued
in the recent contributions [32], [75]. A standard recursive
identification algorithm is used to estimate the parameters
of a “lifted” ARX model which is independent of the
switching sequence, and is built by applying a polynomial
embedding to the input-output data. Then, estimates of the
ARX submodel parameters are obtained by differentiation.
This approach also enables for the estimation of the model
orders and the number of submodels.

IV. DATA CLASSIFICATION AND REGION ESTIMATION

As pointed out in Section III-D, identification methods
allowing for discontinuities in the PWA map (9) are best
suited in the context of hybrid systems, since they allow
logic conditions to be represented by abrupt changes in the
system dynamics. Most recent contributions, such as [5],
[27], [47], [56], [60], have thus focused on regression with
discontinuous PWA maps. It is interesting to note that all
the above mentioned approaches share the idea to tackle
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Fig. 4. Example showing the problem of intersecting submodels.
The data point denoted by the black circle could be in principle
attributed to both submodels. Wrong attribution yields two non-
linearly separable clusters of points.

the identification problem by firstly classifying the data and
estimating the affine submodels, and then estimating the
partition of the regressors domain. In this section, the data
classification step is discussed in view of the subsequent
step of region estimation. Moreover, a brief overview of
linear separation techniques is given, and issues related to
the estimation of the partition from a finite number of points
are highlighted.

A. Data classification

Methods for the identification of PWARX models that firstly
classify the data points and estimate the affine submodels,
and then estimate the partition of the regressors domain, split
in practice the identification problem into the identification
of a SARX model, followed by the shaping of the regions
to the clusters of data. In this respect, such methods can be
also considered as methods for the identification of SARX
models, if the final region estimation step is not addressed.
Vice versa, methods developed for the identification of
SARX models, such as [51], [74], [78], can be used to
initialize the procedures for the identification of PWARX
models.

However, in view of the subsequent step of region esti-
mation, data classification for the identification of PWARX
models needs to be carefully addressed. The main problem
to deal with is represented by data points that are consistent
with more than one submodel, namely data points lying in
the proximity of the intersection of two or more submodels.
Wrong attribution of these data points may lead to misclas-
sifications when estimating the polyhedral regions.

In order to clarify this point, Fig. 4 shows a data set
obtained from a one-dimensional PWA model with s = 2 dis-
crete modes. It is assumed that the parameter vectors θ1 and
θ2 have been previously estimated, no matter which method
has been used. If each data point (yk, rk) is associated to
the submodel i∗ such that the prediction error is minimized,

i.e. according to the rule

i∗ = arg min
i=1,...,s

|yk − ϕ"
k θi|, (24)

the point denoted by the black circle is attributed to the first
submodel. This yields two non-linearly separable clusters
of points. It is stressed that the issue addressed in this
example does not depend on the particular choice of (24)
for associating each data point to one submodel. If data
classification and parameter estimation are performed by
solving Problem 3.2 for a given δ > 0, the point denoted
by the black circle is still attributed to the first submodel in
this case. The gray area in Fig. 4 represents the region of all
data points satisfying

|yk − ϕ"
k θi| ≤ δ (25)

for both i = 1 and i = 2. These data points are termed
undecidable, because they could be in principle attributed to
both submodels.

The identification procedures [5], [27], [47], [56], [60]
deal with the problem of intersecting submodels in different
ways. For instance, an ad-hoc refinement procedure based
on the certainly attributed closest neighbors is proposed in
[5], weights for misclassification are introduced in [47], and
clustering in a feature space is pursued in [27]. These three
approaches will be described in Section V.

B. Region estimation

After the data classification step, providing the estimates of
the discrete state σ(k) ∈ {1, . . . , s}, it is possible to form s
clusters of regression vectors as

Ai =
{

rk : σ(k) = i
}

, i = 1, . . . , s. (26)

The problem of region estimation consists in finding a
complete polyhedral partition

{

Ri

}s

i=1
of the regressors

domain R such that Ai ⊆ Ri for all i = 1, . . . , s. The
polyhedral regions (8) are defined by hyperplanes. Hence,
the considered problem is equivalent to that of separating s
sets of points by means of linear classifiers (hyperplanes).
This problem can be tackled in two different ways:

a) Construct a linear classifier for each pair (Ai,Aj), with
i += j.

b) Construct a piecewise linear classifier which is able to
discriminate among s classes.

In the first approach, a separating hyperplane is con-
structed for each pair (Ai,Aj), i += j. This amounts to solve
s(s − 1)/2 two-class linear separation problems. Given two
sets Ai and Aj , i += j, the linear separation problem is to
find w ∈ Rd and γ ∈ R such that

w"
rk + γ > 0 ∀ rk ∈ Ai

w"
rk + γ < 0 ∀ rk ∈ Aj .

(27)

This problem can be easily rewritten as a feasibility problem
with linear inequality constraints by introducing the quanti-
ties

zk =

{

1 if rk ∈ Ai

−1 if rk ∈ Aj .
(28)


