YP & & VL & DS & MT & NL & CEP & …
Department of Applied Mathematics and Statistics
Johns Hopkins University
Fri Mar 6 08:18:19 2015
#fname <- url("http://www.cis.jhu.edu/~parky/Data/drosophila_retina_1.graphml")
#g <- read.graph(fname, format="graphml")
fname <- "drosophila_retina.Rbin"
load(fname); g <- upgrade_graph(g)
summary(g)
# IGRAPH DN-- 1781 33641 --
# + attr: source (g/c), info (g/c), name (v/c), x (v/n), y (v/n), z
# | (v/n), M (v/n), pre.x (e/n), post.x (e/n), pre.y (e/n), post.y
# | (e/n), pre.z (e/n), post.z (e/n), Proofreading.Details (e/c)
g <- simplify(g) # make g unweighted & hollow
g <- as.undirected(g) # make g undirected (symmetric)
# IGRAPH UN-- 1781 8911 --
# + attr: source (g/c), info (g/c), name (v/c), x (v/n), y (v/n), z
# | (v/n), M (v/n)
## remove the argmax(deg)
maxdv <- which.max(degree(g))
g <- delete.vertices(g,maxdv)
## find the largest connected component (lcc)
cc <- clusters(g)
table(cc$memb)
#
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# 1748 1 1 1 1 1 1 1 3 2 1 1 1 1 1
# 16 17 18 19 20 21 22 23 24 25 26
# 2 2 2 1 1 1 1 2 1 1 1
g <- induced.subgraph(g, which(cc$memb == which.max(cc$csize)))
A <- g[]
summary(g)
# IGRAPH UN-- 1748 7977 --
# + attr: source (g/c), info (g/c), name (v/c), x (v/n), y (v/n), z
# | (v/n), M (v/n)
Given the Fly Data Graph \(G\),
\(skmeans \circ ase(G) \rightarrow \hat{H}_r, r=1,\ldots,\hat{R}\),
\(\hat{R} =\) 8; subgraph orders = 184, 214, 228, 365, 232, 148, 138, 239,
M <- get.vertex.attribute(g,"M")
adjustedRandIndex(M,membp)
# [1] 0.2040246
# M1 M2 M3 M4 M5 M6 M7
# 166.000 299.000 409.000 549.000 589.000 669.000 729.000 879.000
# M8 M9 M10
# 1039.000 1249.000 1378.111
Take the largest connected componets of each of 8 \(\hat{H}_r\), 173, 193, 217, 363, 224, 114, 126, 198
Now, compute kernel-based distance for motif detection:
aa <- reembed(g, 5, membp)
S <- computeS(aa, 0.2)
rownames(S) <- colnames(S) <- 1:pamkout$nc
image2(S,text.cex=0.8,round=0,srt=0)
bb <- pamk(S, krange = 1:(pamkout$nc-1), diss = TRUE)
bb$pamobject$clustering
# 1 2 3 4 5 6 7 8
# 1 1 1 2 1 1 1 2