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Abstract

We introduce a theory of scan statistics on graphs and apply the ideas to the problem of anomaly detection in a
time series of Enron email graphs.

Keywords: Enron email data, time series of graphs, scan statistics, statistical inference, anomaly detection

1. Introduction

Consider a directed graph (digraph) D with vertex set V (D) and arc set A(D) of directed
edges. For instance, we may think of D as a communications or social network, where
the n = |V (D)| vertices represent people or computers or more general entities and an
arc (v, w) ∈ A(D) from vertex v to vertex w is to be interpreted as meaning “the entity
represented by vertex v is in directed communication with or has a directed relationship
with the entity represented by vertex w.” We are interested in testing the null hypothesis
of “homogeneity” against alternatives suggesting “local subregions of excessive activity.”
Toward this end, we develop and apply a theory of scan statistics on random graphs.

2. Scan Statistics

Scan statistics are commonly used to investigate an instantiation of a random field X (a
spatial point pattern, perhaps, or an image of pixel values) for the possible presence of a
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local signal. Known in the engineering literature as “moving window analysis”, the idea is
to scan a small window over the data, calculating some local statistic (number of events for a
point pattern, perhaps, or average pixel value for an image) for each window. The supremum
or maximum of these locality statistics is known as the scan statistic, denoted M(X ). Under
some specified “homogeneity” null hypothesis H0 on X (Poisson point process, perhaps,
or Gaussian random field) the approach entails specification of a critical value cα such that
PH0 [M(X ) ≥ cα] = α. If the maximum observed locality statistic is larger than or equal to
cα , then the inference can be made that there exists a nonhomogeneity—a local region with
statistically significant signal.

An intuitive approach to testing these hypotheses involves the partitioning of the region
X into disjoint subregions. For cluster detection in spatial point processes this dates to
Fisher’s 1922 “quadrat counts” (Fisher and Mackenzie, 1922); see Diggle (1983). Absent
prior knowledge of the location and geometry of potential nonhomogeneities, this approach
can have poor power characteristics.

Analysis of the univariate scan process (d = 1) has been considered by many authors,
including Naus (1965), Cressie (1977, 1980), and Loader (1991). For a few simple random
field models exact p-values are available; many applications require approximations to the
p-value. The generalization to spatial scan statistics is considered in Naus (1965), Adler
(1984), Loader (1991), and Chen and Glaz (1996). As noted by Cressie (1993), exact results
for d = 2 have proved elusive; approximations to the p-value based on extreme value theory
are in general all that is available. Naiman and Priebe (2001) present an alternative approach,
using importance sampling, to this problem of p-value approximation.

3. Scan Statistics on Graphs

The order of the digraph, n = |V (D)|, is the number of vertices. The size of the digraph,
|A(D)|, is the number of arcs. For v, w ∈ V (D) the digraph distance d(v, w) is defined to
be the minimum directed path length from v to w in D.

For non-negative integer k (the scale) and vertex v ∈ V (D) (the location), consider the
closed kth-order neighborhood of v in D, denoted Nk[v; D] = {w ∈ V (D) : d(v, w) ≤ k}.
We define the scan region to be the induced subdigraph thereof, denoted

�(Nk[v; D]) (1)

with vertices V (�(Nk[v; D])) = Nk[v; D] and arcs A(�(Nk[v; D])) = {(v, w) ∈ A(D) :
v, w ∈ Nk[v; D]}. A locality statistic at location v and scale k is any specified digraph
invariant �k(v) of the scan region �(Nk[v; D]). For concreteness consider for instance
the size invariant, �k(v) = |A(�(Nk[v; D]))|. Notice, however, that any digraph invariant
(e.g. density, domination number, etc.) may be employed as the locality statistic, as dictated
by application. The “scale-specific” scan statistic Mk(D) is given by some function of the
collection of locality statistics {�k(v)}v∈V (D); consider for instance the maximum locality
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statistic over all vertices,

Mk(D) = max
v∈V (D)

�k(v). (2)

This idea is introduced in Priebe (2004).
Under a null model for the random digraph D (for instance, the Erdos-Renyi random

digraph model) the variation of �k(v) can be characterized and Mk(D) large indicates the
existence of an induced subdigraph (scan region) �(Nk[v; D]) with excessive activity. A
test can be constructed for a specific alternative of interest concerning the structure of the
excessive activity anticipated. However, if the anticipated alternative is, more generally,
some form of “chatter” in which one (small) subset of vertices communicate amongst
themselves (in either a structured or an unstructured manner) then our scan statistic approach
promises more power than other approaches.

Finally, we wish to consider the scan statistic which accounts for variable scale. Let
K ⊂ {1, . . . , n − 1} be a collection of scales, and let � ′

k be a scale-standardized version of
the locality statistic �k . For instance, for given α ∈ (0, 1), find gk,α(·) such that � ′

k(v) =
gk,α(�k(v)) satisfies P[� ′

k(v) ≥ cα] ≈ α for all v ∈ V (D) and for all k ∈ K . This
standardization imposes upon each locality statistic the same probability of exceedance.
Then the scan statistic MK (D) is given by

MK (D) = max
k∈K

max
v∈V (D)

� ′
k(v) (3)

and we reject for large values of MK (D).
For the Enron data considered in this paper, as for much social network data, no appro-

priate simple null random graph model is obvious. The dataset, as we process it, consist
of a time series of digraphs D1, D2, . . . , DT =189. We will proceed conditionally: we will
assume that the data (or the statistics derived from the data) have some short-time station-
arity properties under the null, so that a moving window approach is appropriate. We will
be concerned with discovering anomalies that appear as digraphs which differ substantially
from those seen in the recent past. In particular, we wish to detect subdigraphs with an
unusually high connectivity, as measured by our statistic. This conditional approach allevi-
ates the requirement to posit an appropriate and simple null graph model—but does require
some (approximate) stationarity.

4. The Enron Data

The Enron email dataset is available online (http://www.cs.queensu.ca/home/skill/
siamworkshop.html). This dataset consists of a collection of 150 folders corresponding
to the email to and from senior management and others at Enron, collected over a period
from about 1998 to 2002. The emails have been minimally processed to correct integrity
problems. Some emails have been deleted, as have all attachments. Thus, while imperfect,
this dataset represents a rich environment in which to perform text analysis and link analysis.
More information on this dataset can be found online (http://www-2.cs.cmu.edu/∼enron).
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One consequence of the processing of these data is that some of the original email
addresses have been changed. Invalid addresses were converted to no address@enron.com.
In several cases, individuals have multiple addresses, which are clearly a result of some
post-processing: for example, John Q. Public has email addresses john.public@enron.com
and q..public@enron.com. In this study we will treat such cases as distinct; one potential
goal might be to recognize this “aliasing” from the link analysis alone, without reference
to the content of the messages. This will be discussed further in Section 7.1.

5. Whence our Enron Graphs?

The data are collected from “about 150 users”—mostly Enron executives, but also some
energy traders, executive assistants, etc. However, our graphs are based on 184 users, which
is the number of unique addresses we obtain from the ‘From’ line of emails in the ‘Sent’
boxes after manually removing some addresses which are clearly not associated with the
150 users. (NB: Neither of the two extreme options—keeping all addresses, or merging
to the point of one-to-one correspondence between addresses and known users—seems
practical; the former yields too many obvious aliases and extraneous addresses, and no
simple unassailable version of the latter presents itself to us. Thus, we proceed with an
admittedly imperfect collection of vertices.) In addition, some of the time stamps in the
original data are clearly invalid, occurring before Enron existed, so we restrict our attention
to a period of 189 weeks, from 1998 through 2002.

For each week t = 1, . . . , 189, there is a digraph Dt = (V, At ) with |V | = 184 vertices
and directed edges (arcs) At , where (v, w) ∈ At ⇔ vertex v sends at least one e-mail to
vertex w during the t-th week. We make no distinction between emails sent “To”, “CC” or
“BCC”.

6. Statistics and Time Series

Our time-dependent scale-k locality statistic is given by

�k,t (v) = |A(�(Nk[v; Dt ]))| (4)

for k ∈ {1, 2, . . . , K }. In an abuse of notation, we will let �0,t (v) = outdegree(v; Dt ).
Figure 1 shows the three statistics

Mk,t = max
v

�k,t (v); k = 0, 1, 2 (5)

as well as size(Dt ), as functions of time (weeks) t = 1, . . . , 189 for the 189 weeks under
consideration. (Figures 8–11 show these four curves separately.)

The raw locality statistics �k,t (v) are inadequate for our purposes. Consider, for instance,
the situation in which one vertex, v, has a lot of activity throughout time, and another vertex,
w, has but one tenth this amount of activity until one week in which w triples its activity.
Without some form of vertex-dependent standardization, the increase in activity for w will
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Figure 1. Time series of scan statistics and max degree (Mk,t for k = 0, 1, 2), as well as digraph size, for weekly
Enron email digraphs during a period of 189 weeks from 1998–2002. (See also figures 8–11.)

go unnoticed, as v = arg max �k,t (v) regardless of w’s increased activity. Thus the locality
statistics �k,t (v) must be standardized using vertex-dependent recent history.

Our vertex-standardized locality statistic, for k = 0, 1, 2, is given by

�̃k,t (v) = (�k,t (v) − µ̂k,t,τ (v))/ max(σ̂k,t,τ (v), 1) (6)

where

µ̂k,t,τ (v) = 1

τ

t−1∑

t ′=t−τ

�k,t ′ (v) (7)

and

σ̂ 2
k,t,τ (v) = 1

τ − 1

t−1∑

t ′=t−τ

(�k,t ′ (v) − µ̂k,t,τ (v))2. (8)

That is, we standardize the locality statistic �k,t (v) by a vertex-dependent mean and standard
deviation based on recent history. (The denominator in �̃k,t (v) is forced to be greater than
or equal to one to eliminate fragility due to vertices with little or no variation in activity.)
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Figure 2. Time series of standardized scan statistics and max degree (M̃k,t for k = 0, 1, 2) for weekly Enron
email digraphs during a period of 189 weeks from 1998–2002. (See also figures 12–14.)

In figure 2 we plot the standardized scan statistics

M̃k,t = max
v

�̃k,t (v) (9)

against t over the 189 weeks. (Figures 12–14 show these three curves separately.)
This approach requires a vertex-dependent local stationarity assumption. The validity of

a stationarity assumption is obviously suspect over the entire 189 weeks, but short-time
near-stationarity (we use τ = 20) may be reasonable as a null model.

7. Anomaly Detection

Given the standardized scan statistic time series M̃k,t presented in figure 2, we now consider
anomaly detection.

For simplicity, we consider a temporally-normalized version of M̃k,t ,

Sk,t = (M̃k,t − µ̃k,t,�)/ max(σ̃k,t,�, 1), (10)
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Figure 3. Sk,t , the temporally-normalized standardized scan statistics, on zoomed-in time series of Enron e-mail
graphs during a period of 20 weeks in 2001. Top: k = 0; Middle: k = 1; Bottom: k = 2. This figure shows a
detection (a standardized statistic M̃k,t which achieves a value greater than 5 standard deviations above its running
mean, or a temporally-normalized standardized statistic Sk,t in this plot taking a value greater than 5) at week
t∗ = 132 in May 2001 for scale k = 2, but not for k = 1 or k = 0.

where µ̃k,t,� and σ̃k,t,� are the running mean and standard deviation estimates of M̃k,t based
on the most recent � time steps. (Here we use � = 20.) Detections are defined here as weeks
for which M̃k,t achieves a value greater than five standard deviations above its mean; i.e.,
times t such that Sk,t > 5.

Figure 3 depicts S2,t for a 20 week period from February 2001 through June 2001.
We observe that the second order scan statistic indicates a clear anomaly at t∗ = 132
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(maxv �̃2,132(v) is a seven sigma event) in May 2001. This anomaly is apparent, in hindsight,
in figure 2.

Inference performed using simple sigmages is inadequate in this case, of course, because
there is no reason to believe that the distribution of Sk,t is normal or that Sk,t and Sk,t ′

are independent. Computational methods such as the bootstrap would be appropriate. We
consider exceedance probabilities of an extreme value distribution, the Gumbel, fit via the
method of moments. S2,132 = 7.3; 7.3 standard deviations yields a p-value <10−10, assum-
ing normality. While the significance for the detection at t∗ = 132 is not so drastic under the
more reasonable Gumbel model, we nevertheless obtain an exceedance probability <10−6,
which remains convincing. Bonferonni analysis suggests that if the �̃k,t are approximately
distributed as a t19 then the detection is significant; however, if the distribution of the �̃k,t

has extraordinarily heavy tails (e.g., Cauchy) then the α = 0.05 level critical value may
be greater than 7.3. Thus, under a reasonable range of null distributions, the detection at
t∗ = 132 is statistically significant.

Figure 4 shows the graph topology, sans isolates, for our ‘detection’ graph D132. Our ver-
tex of interest, v∗ = arg maxv �̃2,132(v), is identified with email address email90. Of note
is the fact that arg maxv �0,132(v) = email83. That is, the vertex of maximum outdegree
for t∗ = 132 is not the cause of our detection. Furthermore, arg maxv �1,132(v) = email83,
arg maxv �2,132(v) = email147, arg maxv �̃0,132(v) = email147, and arg maxv �̃1,132(v) =
email75. Thus the detection based on v∗ = email90 is apparent only when using the stan-
dardized second order scan statistic.
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Figure 4. Plot of the ‘detection’ Enron email graph D132 (sans isolates) for which our scan statistic methodology
detects an anomaly. The center vertex, email90, is v∗ = arg maxv �̃2,132.
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Table 1. Details for the ‘detection’ graph D132.

Time t∗ 132 (week of May 17, 2001)
size(D132) 267

Scale k Mk,132 M̃k,132 Sk,132

0 66 8.3 0.32

1 93 7.8 −0.35

2 172 116.0 7.30

3 219 174.0 5.20

Number of isolates 50

Table 1 gives some relevant numerical values for the ‘detection’ graph D132.
There is excessive activity among the elements of the closed 2-neighborhood of our vertex

of interest v∗ which is not accounted for by its outdegree (or its closed 1-neighborhood). In
fact, v∗ communicates, in particular, with other vertices each of which has high outdegree.
This type of excessive local activity is precisely the raison d’etre for our scan statistics; our
approach exhibits the ability to detect this anomaly.

Is this detection an event of interest? It is statistically significant, but the objective of our
scan statistic methodology is to sift through massive communications data to find potentially
informative events for the purpose of directing additional, more time consuming investiga-
tions. The ultimate determination of the practical significance of this or any detection must
be made on the basis of subsequent analysis. There is a coinciding insider trading event on
the Enron time line . . . but there are many insider trading events on the Enron time line!
Ideally, one would hope to find a link between the detected excess activity and that insider
trading. Such a forensic analysis will require delving into the content of the email messages
and associated meta-data.

Time t∗ = 132 is the only week among the 189 under consideration for which S2,t ≥ 5.
Detections for the other scan statistics—orders 0, 1, and 3—that may be worth pursuing
are summarized here. For maximum standardized outdegree, there are three weeks with
S0,t ≥ 5: 58 (week of December 16, 1999), 96 (week of September 7, 2000), 146 (week of
August 23, 2001) for the standardized first order scan statistic, we obtain (almost) the same
three detections: 58, 94, 146. The standardized third order scan statistic produces detections
at t∗ = 132 and at week 87.

7.1. Aliasing

In the case of the detection at t∗ = 132,

v∗ = arg max
v

�̃2,132(v) = email90, (11)

perusal of the emails shows that email90 and email141 are really the same person. User
email90 had no activity before t∗ = 132, at which time email141 switched to the email90
identifier. Thus we have detected an instance of aliasing, which could perhaps have been
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addressed during the manual merging stage wherein we settled on the collection of 184
vertices to consider. Of course, this identification does in fact require perusal of the emails,
which perusal was suggested by the detection . . . precisely the point of the exercise!

However, it may be possible to automatically identify such aliasing events. Given the
detection (v∗, t∗) we can immediately identify email90 as having had no activity prior
to t∗ = 132. From this point, we may employ a “matched filter” scheme to determine
candidates for aliasing by matching the pattern of email90’s activity at or after t∗ = 132
against the pattern of other vertices’ activity prior to t∗ = 132. Vertices with a high score
for some matching function will be deemed likely candidates for further investigation.

For instance, we may compute, for each vertex v ∈ V \ {v∗}, the simple score

st∗,κ (v; v∗) =
t∗−1∑

t ′=t∗−κ

|N1(v; Dt ′ ) ∩ N1(v∗; Dt∗ )|. (12)

In this case we obtain email141 = arg maxv st∗,κ (v; v∗) with κ ≥ 5. That is, for this simple
case, the aliasing can be automatically identified and resolved.

This idea of employing matched filters to time series of graphs, introduced here in a very
simplistic fashion, will be pursued in more detail elsewhere.

7.2. Another Detection

The detection of v∗ = arg maxv �̃2,132(v) = email90 at t∗ = 132, while real and interesting,
is due to the fact that email90 had not been active prior to t∗ = 132. We may be interested,
instead, in detections for which activity increases from a non-zero baseline. That is, we
consider the statistic

�̃k,t (v) · I {µ̂0,t,τ (v) > c}, (13)

where I {E} is the indicator function taking value one if event E occurs and taking value
zero otherwise, which requires there to have been some recent activity.

For c = 1, one such detection of this type, for which the order k = 2 scan statistic detects
but the order k = 0 and k = 1 scan statistics do not detect, is v∗ = email152 at t∗ = 152
(the week of October 4, 2001).

Table 2 gives the scan statistics for this detection for the weeks up to and including t∗.
Here we see clearly the increase in activity, and we see that it is not due to order 0 or order
1 locality statistics. (N.B. It does appear that a detection at t∗ − 2 may be appropriate.)

However, further investigation indicates that this detection is due to the fact that
email152 communicates with email154, and email154 is an order 0 locality statistic
detection at t∗ = 152 due to a massive increase in outdegree (see Table 3).

Thus, in some sense, neither the email90/email141 detection at t∗ = 132 nor the
email152/email154 detection at t∗ = 152 is really due to the type of excessive “chatter”
in which we are most interested.
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Table 2. Locality statistics �k,t (v∗ = email152) for
the time range {t∗ − 5, . . . , t∗} leading up to the v∗ =
email152 detection at t∗ = 152.

Scale k �k,t∗−5:t∗ (v∗)

0 [1, 2, 1, 3, 1, 2]

1 [1, 2, 2, 9, 2, 4]

2 [1, 2, 2, 19, 4, 175]

3 [1, 2, 2, 58, 6, 268]

Table 3. Locality statistics �k,t (v = email154) for
the time range {t∗ − 5, . . . , t∗} leading up to the v∗ =
email152 detection at t∗ = 152.

Scale k �k,t∗−5:t∗ (v)

0 [3, 2, 0, 2, 3, 62]

1 [3, 3, 0, 3, 6, 154]

2 [4, 3, 0, 37, 11, 229]

3 [4, 3, 0, 98, 16, 267]

7.3. Detecting Chatter

For each time t and vertex v, consider the order 2 statistic

�̃ ′
t (v) = (�̃2,t (v) · It,τ (v))/ max(γt (v), 1). (14)

Here the term It,τ (v) is the product of three indicator functions,

I {µ̂0,t,τ > c1}, (15)

I {�0(v) < σ̂0,t,τ (v)c2 + µ̂0,t,τ (v)}, (16)

I {�1(v) < σ̂1,t,τ (v)c3 + µ̂1,t,τ (v)}. (17)

That is, we gate the second order scan statistic so that some minimal level of recent activity
is required, and we insist that the order 0 and order 1 scan statistics do not yield detections.
In this way we narrow the class of alternatives under consideration—the types of anomalous
activities that will be deemed detections; we seek a detection in which the excess activity is
due to chatter amongst the 2-neighbors. We include an “inhomogeneity penalty” γt (v), the
standard deviation of the outdegrees of the neighbors N1(v∗; Dt∗ ), in the denominator of
�̃ ′

t (v) to further narrow our search to the case of “balanced chatter” (and to rule out events
such as the email152/email154 detection at t∗ = 152).

The arg max(v,t) �̃
′
t (v) is given by (v∗, t∗) = (email164, 109). (The value of t∗ = 109

corresponds to the week of December 7, 2000.) Figure 5 displays M̃ ′
t = maxv �̃ ′

t (v) as well
as the temporally-normalized version S′

t .
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Figure 5. Plot of order 2 statistics M̃ ′
t and S′

t showing the maximum at t∗ = 109 in December 2000. This is the
email164 “excessive chatter” detection.

The raw locality statistics �k,t (v∗) for the time range {t∗ − 5, . . . , t∗} leading up to this
detection are given in Table 4. As can be seen from Table 4, the raw locality statistics for
k = 0 and k = 1 do not have a substantial signal at t∗ = 109, while for k = 2 the presence
of an anomaly is clear.

The inhomogeneity penalty for this detection is γt∗ (v∗) ≈ 1.7; the outdegrees of the five
neighbors of v∗ = email164 are 6,6,6,7,10.

The induced subdigraph at t∗ = 109, �(N2[v∗; Dt∗ ]), is depicted in figure 6. We see that
v∗ = email164 has five neighbors, each of which has outdegree between six and ten. That
is, this detection is due to v∗ communicating with a moderate subset of vertices, each of
whom communicates with another moderate subset. Comparing this graph with email164’s

Table 4. Locality statistics �k,t (v∗) for the
time range {t∗ − 5, . . . , t∗} leading up to the
email164 detection at t∗ = 109.

Scale k �k,t∗−5:t∗ (v∗)

0 [3, 5, 4, 5, 4, 5]

1 [11, 13, 10, 10, 11, 18]

2 [14, 35, 21, 38, 13, 65]
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Figure 6. Plot of the ‘detection’ Enron email graph �(N2[v∗ = email164; Dt∗=109]).

induced subdigraph �(N2[v∗; Dt∗−1]) at t∗ − 1 = 108 (black arcs and associated vertices
in figure 7) gives a clear, albeit simplistic, indication that change has occurred. Figure 7
gives additional information regarding this change, depicting the subdigraph induced at
t∗ − 1 = 108 by the union of email164’s 2-neighborhood at t∗ − 1 = 108 and email164’s
2-neighborhood at t∗ = 109. The arcs corresponding to communications between members
of email164’s closed 2-neighborhood at t∗ − 1 = 108 are depicted in black; gray arcs
represent other communications in D108 between vertices in email164’s 2-neighborhood
at t∗ = 109. Figure 7 shows that this detection is not the result of a simple increase in the
size of v∗’s neighborhood, but that the vertices in the neighborhood at t∗, while active at
t∗ − 1, have also increased their activity. Thus, the detection is not due solely to v∗ joining
a larger group; in addition, the group itself is more active as well. We interpret this figure
as suggesting that this detection is robust—insensitive to small changes in the graph.

8. Discussion

A theory of scan statistics on graphs offers promise for detecting anomalies in time series
of graphs.

We have employed perhaps overly-simplistic time series and inference methods, for
purposes of illustration; more elaborate methods such as exponential smoothing, detrending,
and variance stabilization may be appropriate. In addition, multivariate time series (one time
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Figure 7. An induced subgraph of D108. Black arcs and associated vertices represent email164’s induced
subdigraph �(N2[v∗; Dt∗−1]) at t∗ − 1 = 108. Gray arcs represent other communications in D108 between
vertices in email164’s 2-neighborhood at t∗ = 109. Comparing this figure with figure 6 provides information
regarding the change from t∗ − 1 = 108 to t∗ = 109 for the (v∗ = email164, t∗ = 109) detection.

series for each vertex v, in this case) have a theory all their own—e.g., vector autoregressive
models—which we have ignored here. And, of course, for data such as this Enron corpus,
robust versions of moment estimates we have employed are called for.

Nevertheless, despite our simplistic approach to these various issues, we have demon-
strated the potential utility of the scan statistic approach to the problem of anomaly detection
in a time series of Enron email graphs. Much remains to be done—mathematically, com-
putationally, and with respect to data and meta-data analysis. Of particular interest is the
extension of these scan statistics to weighted graphs (and hypergraphs), allowing for the de-
tection of anomalies related to the number (and possibly type) of messages sent, as opposed
to the simpler case considered herein.

Noteworthy as a closing fact is that the procedures introduced herein can all be performed
in a real-time, streaming data environment. That is, a sliding one-week window, rather
than disjoint one-week windows, can be utilized and nothing presented herein causes a
common laptop computer difficulty in keeping up. Thus, these procedures can be applied
in scenarios of on-line analysis, in addition to the forensic scenario offered by this Enron
corpus.

Appeindix
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Figure 8. Time series of digraph size for weekly Enron email digraphs during a period of 189 weeks from
1998–2002. (See also figure 1.)
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Figure 9. Time series of scan statistic M0,t (max degree) for weekly Enron email digraphs during a period of
189 weeks from 1998–2002. (See also figure 1.)
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Figure 10. Time series of scan statistic M1,t for weekly Enron email digraphs during a period of 189 weeks from
1998–2002. (See also figure 1.)
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Figure 11. Time series of scan statistic M2,t for weekly Enron email digraphs during a period of 189 weeks from
1998–2002. (See also figure 1.)
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Figure 12. Time series of standardized scan statistic M̃0,t for weekly Enron email digraphs during a period of
189 weeks from 1998–2002. (See also figure 2.)
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Figure 13. Time series of standardized scan statistic M̃1,t for weekly Enron email digraphs during a period of
189 weeks from 1998–2002. (See also figure 2.)
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Figure 14. Time series of standardized scan statistic M̃2,t for weekly Enron email digraphs during a period of
189 weeks from 1998–2002. (See also figure 2.)
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