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ABSTRACT

The main challenge today in photometric redshift estimation is not in the accuracy but in understanding the uncer-
tainties. We introduce an empirical method based on Random Forests to address these issues. The training algorithm
builds a set of optimal decision trees on subsets of the available spectroscopic sample, which provide independent
constraints on the redshift of each galaxy. The combined forest estimates have intriguing statistical properties,
notable among which are Gaussian errors. We demonstrate the power of our approach on multi-color measurements
of the Sloan Digital Sky Survey.
Key words: galaxies: distances and redshifts – methods: data analysis – methods: statistical – techniques:
photometric

1. INTRODUCTION

The redshifts of extragalactic sources are accurately deter-
mined from spectroscopic measurements. Spectroscopy, how-
ever, is limited by the high wavelength resolution, which can
only partly be overcome with more observing time. Recently,
an increasing number of studies rely on less precise statistical
estimates of the redshifts based on more efficient broadband
photometry. In fact, these photometric redshifts are in the core
of many key projects of the upcoming survey telescopes.

Various successful techniques have been developed. Some
leverage training sets (e.g., Connolly et al. 1995; Wang, Bahcall
& Turner 1998; Brunner et al. 1999; Collister & Lahav 2004),
others utilize template spectra for comparisons (e.g., Baum
1962; Coleman, Wu & Weedman 1980; Koo 1985; Gwyn &
Hartwick 1996; Sawicki et al. 1997; Benı́tez 2000; Fernández-
Soto et al. 1999; Bruzual & Charlot 2003), and some use a
combination of the two (Budavári et al. 2000; Csabai et al.
2000). Applied to the same data sets, these techniques by and
large converge, reaching similar accuracy, primarily limited by
the systematic errors in the data.

Most redshift estimators today fall short in providing reliable
models of the uncertainties. All things being equal, a technique
that offers a verifiable model of the estimation error is preferable
to one without. Some work on error estimators which analyze
performance post hoc has been done, e.g., by Oyaizu et al.
(2008a). The method outlined in Carliles et al. (2007) promises
precise redshift estimates along with Gaussian errors that reflect
the true uncertainty for each source. In this paper, we focus
on a new empirical technique borrowed from the arsenal of
the machine learning community; a method that has intriguing
statistical properties that makes it well suited for photometric
redshift estimation.

The structure of the paper is as follows. In Section 2, our
choice of method called Random Forest (RF) regression is
introduced for the problem of redshift estimation. In Section 3,
we apply this new technique to a well-studied data set from the
Sloan Digital Sky Survey (SDSS; York et al. 2000) and discuss
the results. Section 4 concludes our study.

2. RANDOM FORESTS

Empirical redshift estimation can be viewed as a regression
problem, if one believes that the redshift is a function of

the photometric observables, e.g., the apparent magnitudes
in various passbands. Several parametric and non-parametric
methods have been applied to this problem but most are geared
toward accuracy and loose control of the uncertainties. Our
approach is to focus on the error properties of the estimates,
which we achieve by using a method called RF regression
(Breiman 2001). The idea is to build independent regression
trees on the training set, and to utilize the resulting distribution
for characterizing the error and deriving an accurate estimate
for each object.

2.1. Regression Trees

Regression trees (Breiman et al. 1984) are used for modeling
continuous functions. The trees are built by a deterministic
procedure that recursively partitions the training set into a
hierarchy of clusters of similar objects. This hierarchy is
represented (and stored in an implementation) as a binary
tree, whose nodes contain the collections of sources. New
nodes of the tree are created by splitting the nodes and their
collections in an optimal way. The split at each node is done
along one of the axes of the input space (e.g., the SDSS ugriz
magnitudes), and the choice of which dimension is best to
split on is done according to which dimension gives the lowest
resubstitution error in the resulting subsets. The resubstitution
error is equivalent to the standard deviation from the mean
along the direction of the desired parameter, i.e., the known
spectroscopic redshift zspec, summed over the two new subsets,

εresubs = εleft + εright, (1)

with components

εleft = 1
Nleft

∑

zi∈left

(zi − z̄left)2 (2)

εright = 1
Nright

∑

zi∈right

(zi − z̄right)2, (3)

where Nleft and Nright are the numbers of objects on the
two sides of the splitting point, and z̄left and z̄right are the
means of those respective collections. Along each dimension,
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there is an optimal split point which will minimize the above
score in Equation (1). We choose the best axis according to
resubstitution error and we split the node accordingly. The
reason for computing the resubstitution error around the mean is
that the mean is the optimal parameter estimator for the response
(in our case the redshift) of the objects in a given cluster; that
is, if you had to pick a scalar value to represent the redshift
of all objects in the cluster, the mean would be the optimal
choice according to a Euclidean distance metric. We choose
to minimize the resubstitution error for the same reason; the
resulting splits are optimal according to Euclidean distance. One
could try a more robust estimator than the mean, but the mean
works well in practice, it is easy to compute, and the behavior
of regression trees constructed thusly is well understood. There
is also a nice intuitive clustering analog: choosing a split point
in this way can be seen as simply doing k-means clustering
with k = 2.

Regression trees are typically grown fully, that is, until each
leaf node contains only one value, and then pruned back to
optimize performance on cross-validation data sets. If branching
at a given node does not improve performance on test data,
branches from that node are cut off.

2.2. Randomized Trees

RFs are ensembles of regression trees trained on bootstrap
samples. Given a training set D of size N, a bootstrap sample
is a subset of D selected by choosing N objects from D with
replacement (Efron & Tibshirani 1994). The idea is that one can
generate various bootstrap samples and train separate predictors
(in our case, build regression trees) with those samples to
produce many different estimates. One can then average these
estimates into a more robust aggregate. This is called bootstrap
aggregating, or bagging (Breiman 1996), and in addition to
giving an accurate estimate, it also provides a distribution of the
individual estimates. It has been shown that bagging predictors
using bootstrap samples drawn from the population reduce
variance (Hastie et al. 2001, p. 247). The assumption then is
that this holds to some extent with bootstrap samples drawn
from the data as is the only option in the real world. In practice,
the amount of variance reduction gained per additional tree is
determined empirically for each data set by increasing the forest
size until the variance on a held-out test set appears to converge
to a lower limit.

RF regression trees also introduce some additional random-
ization beyond what results from the bootstrap process. At each
node, rather than splitting on the best dimension from the input
space, the split is done on the best dimension from a random
subspace (Ho 1998). For example, out of the u, g, r, i, and z
dimensions, a node might randomly choose only three of these
dimensions to consider, say u, r, and z. Each node chooses its
random subspace independently of all other nodes, including
parent nodes. This random subspace method helps to increase
independence between trees, and it has the additional benefit of
reducing computational cost. Each tree branch is grown until a
user-specified minimum number of training objects (commonly
five) is reached in a node and the tree does not branch any fur-
ther from that node. Its value is then defined as the mean of the
known redshifts associated with the objects it contains. After all
trees in a RF are grown, the forest can predict responses to new
input points. A query point is classified left or right starting at
the root of each tree in the forest, moving to the next level until
it reaches a leaf node, and the aggregate estimate zphot for the
new object is defined as the mean of these leaf node values.

3. APPLICATION TO SDSS GALAXIES

Now we turn to apply the above method to multi-color
observations of galaxies in the SDSS. The SDSS is two surveys
in one: it is a photometric survey that takes multi-color images
of the sky on the best nights in five passbands u, g, r, i, z, and
it is also a spectroscopic survey that spends most of the time
measuring the spectra of close to a million objects. For our
exercise, we use a subset of the Main Galaxy Sample (MGS;
Strauss et al. 2002) in the Data Release 6 catalog (Adelman-
McCarthy et al. 2008).

3.1. Sample Selection

To ensure high data quality we use a strict set of selection
criteria. The ranges are chosen to eliminate erroneous measure-
ments that are obvious outliers. We expect RFs to be some-
what robust to missing and erroneous data as the randomization
process reduces the reliance on any particular data element.
Breiman and Cutler describe several possible approaches to
dealing with missing values.4 However, our primary concern is
the development of good estimates with error distributions, so
we choose to take advantage of the large amount of complete
and accurate data available in SDSS. We perform the final selec-
tion of the training and test sets using the SDSS Science Archive
stored in an SQL Server database engine. The Catalog Archive
Server is searched via the online CasJobs Web site5 using the
following SQL command:

SELECT a.SpecObjID, a.ObjID, a.PrimTarget, a.z, ...

FROM SpecPhoto a

JOIN UberCal b ON b.ObjID = a.ObjID

WHERE a.SpecClass = 2 – Galaxies

AND a.SciencePrimary = 1

AND a.ZConf > 0.9 AND a.ZErr < 0.1

AND a.z BETWEEN 0.0001 AND 1

AND (a.ZWarning & 0xFFFF1B10) = 0

AND (a.PrimTarget & 448) > 0

AND a.ModelMagU > − 9999 AND...

AND b.ModelMagU > − 9999 AND...

GO

Here, we select highly confident redshifts, extinction-
corrected magnitudes including ones using the so-called über-
calibration (Padmanabhan et al. 2008) and the sets of flag bits
from PrimTarget, which allows us to select the appropriate
target categories. In particular, we select only galaxies, cho-
sen both from the SDSS MGS and the luminous red galaxies
(LRGs).

3.2. Results

We constructed a forest of 400 trees trained on 80,000
objects to estimate redshifts for 100,000 previously held-out
test objects. For a given test point, a forest with B trees provides
B estimates of the redshift, {zi}. Then for this particular input,
the aggregate estimate for the redshift, zphot, is the mean of these
zi estimates. We also evaluated the trimmed mean (eliminating
those zi outside of 2σ of their mean,) and the results were
virtually identical. The rms error between trimmed means and

4 http://www.stat.berkeley.edu/∼breiman/RandomForests/cc_home.htm
5 http://casjobs.sdss.org/CasJobs/
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Figure 1. (a) Photometric vs. spectroscopic redshift for 100,000 test objects distributed into 25 bins along each axis with seven levels. (b) Mean error for 100,000 test
objects in eight bins vs. photometric redshift with bars marking region containing 34% of errors on either size of the mean.
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Figure 2. (a) Observed standardized error (εphot/σε ) for 100,000 test objects binned (circles) and standard normal distribution (curve). (b) Percent observed standardized
error within level-α critical values for 100,000 test objects vs. 1 − α (circles) and percent error expected within level-α critical values vs. 1 − α (line).

corresponding spectroscopic redshifts is 0.023. The character
of our estimates over the usable range for our methodology
is shown in Figure 1(a). The estimates are generally good,
with some slight bias visible near the origin due to the local
skewness of the underlying distribution of redshifts. The average
difference between zphot and zspec is shown as a function of zphot
in Figure 1(b). This shows that over the usable range, given what
we believe zphot should be, we are just as likely to err low or high,
meaning that what zspec-dependent bias we have is dominated
by variance in the same zspec neighborhood.

For a given test point, each zi estimate has an associated
estimation error, εi ≡ zi − zspec, and we define the aggregate
estimation error as

εphot ≡ zphot − zspec, (4)

which is equivalent to the mean of the εi values. We can think of
the zi as realizations of identically distributed random variables
with some physical mean. Since zphot is the sample mean of these
zi , there is a central limiting behavior; zphot tends toward the
physical mean. Under ideal conditions (B → ∞, independence
among the zi), the central limit theorem would give us the
distribution from which zphot is drawn. If the mapping from color
to redshift space were non-degenerate, the physical mean would
be equivalent to zspec, and this would give us the distribution from
which εphot is drawn, i.e., the distribution of our estimation error.
Following this intuition and applying it to our SDSS galaxy

sample leads us to a useful estimate of this distribution. To wit,
we observe that

εphot

σε

∼ N (0, 1) approximately, (5)

where σε indicates the standard deviation of the tree er-
ror realizations εi . Figure 2(a) shows a histogram of errors
standardized and plotted along with the Gaussian distribu-
tion. The agreement is striking, though there is a slight skew
which is anticipated by Figure 1(a); the galaxy distribution is
more concentrated at lower values of zspec, where we tend to
overestimate. Still, the agreement is remarkable, even if not
perfect.

As an additional sanity check, we can compute the percentage
of our standardized observed errors that fall within the level-α
critical values for a given α to see how well this compares with
1 − α, the area under the standard normal curve between those
critical values. For instance, if α = 0.05, the area under the lower
tail of the standard normal curve is α/2 = 0.025 as is the area
under the upper tail; thus the area between the tails is 0.95. We
therefore expect 95% of our standardized errors to fall between
the boundaries delimiting the tails under the assumption that
our errors are normal. We do this test for several values of α
and plot the results in a quantile–quantile plot in Figure 2(b).
Again, though the results are not perfect, they are very close
to what we expect. Figure 2(a) anticipates that not quite as
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Figure 3. (a) rms error for estimates on 10,000 test objects given by forests of 100 trees trained on 5000, 10,000, 20,000, 40,000, and 80,000 objects. (b) Training
time for a forest of 100 trees trained on 5000, 10,000, 20,000, 40,000, and 80,000 objects. (c) rms error for estimates on 10,000 test objects given by forests of 10–800
trees trained on 80,000 objects.

many of our standardized errors are near zero as should be, so,
for instance, roughly 61% of our errors fall within the critical
values for α = 0.32, corresponding approximately to the range
within one standard deviation of zero, where we expect to see
68%. Notwithstanding this imperfection, Figure 2(b) indicates
that our errors fall within prescribed bounds with nearly the
correct probability.

We wish to emphasize that though we standardize our errors
for the purposes of analyzing their behavior in the aggregate,
before standardization they are intrinsically unique per-object
error distribution estimates. The value of σε is unique to each
new test object; it reflects something about the quality of the
input data and our confidence in our estimate for this particular
observation.

3.3. Practical Details of the Procedure

In separate tests from those described above, we measure
how RF performance scales with data and with forest size. We
generate training sets of sizes 80,000, 40,000, 20,000, 10,000,
and 5000 by first uniformly sampling the full result set without
replacement, and then uniformly sampling the resulting subset
(again without replacement), so that smaller training sets are
proper subsets of each larger set.

For each training set size, we train eight forests of 100 trees
each. Since final estimates can be aggregated from any number
of tree predictions, this allows us to observe how the quality
of estimates scales with forest size; in our case, from 100 to
800 trees. It also has the additional benefit of allowing the
computation to be done on a machine with a “modest” amount
of memory. Constructing trees with different training set sizes,
of course, allows us to observe how the quality of estimates
scales with training set size.

We observe the accuracy one could expect to see for various
training set and forest sizes. We trained RFs of 100 trees
on training sets of sizes 5000, 10,000, 20,000, 40,000, and
80,000 using colors from the über-calibration. Performance
is then tested on a random subset of 10,000 held-out objects.
The resulting rms error over these 10,000 objects is shown in
Figure 3(a). The training times for these forests are shown in
Figure 3(b). The gain in accuracy bought by larger training
sets is significant. Predictably, so is the gain in training time.
Since on average one can train one tree as fast as another
with the same amount of data, one does not need a plot

to see that training timescales linearly with the number of
trees. In our tests, all work was done on an Apple MacBook
equipped with a 2.0 GHz Intel Core 2 Duo processor with 2GB
RAM using R version 2.5.1 with the Random Forest package
version 4.5–18.6

Next, we tested the effect of increasing the number of trees in
the forest. We trained eight RFs of 100 trees each on a training set
of 80,000 objects using ubercal colors. For our random subset
of 10,000 held-out objects, we computed aggregate estimates
using individual predictions from first one tree, then two trees,
then three, and so on for effective forest sizes of 1 up to 800.
The resulting rms error over these 10,000 objects is shown in
Figure 3(c). For this training set with the bootstrap sample
size we used, the rms error on this test set stops improving
significantly beyond the first 50 trees. With each additional tree,
the forest converges toward a limiting error which is intrinsic
to the data. Between 50 and 800 trees the gain in rms error
is only about 1%, and certainly by the time we had trained
200 trees we had reached a point of diminishing returns. One
should note that the rate of convergence will depend on the forest
parameters such as bootstrap sample size and training sample
size.

4. DISCUSSION

The performance of RFs on the SDSS MGS is comparable
to that of other machine learning methods, e.g., artificial neural
networks (Oyaizu et al. 2008b). Measured over the entire test
set, the RF error is nearly mean zero, i.e., RFs are essentially
unbiased; however, they exhibit the same boundary biases
common to other empirical methods (Figure 1(a)). We suspect
that due to systematic errors in the input data RFs and other
empirical methods may have come close to a lower bound on
error achievable by treating photo-z as a regression problem.
This issue is discussed in more detail in Budavári (2009).

Our error estimation method appears to perform comparably
to the Nearest Neighbor Error method of Oyaizu et al. (2008a),
yielding normally distributed errors with accurate per-object
parameter estimates. Our method has the additional benefit

6 The R statistical computing environment, as well as the Random Forest
package for R, may be downloaded from http://www.r-project.org/. Sample R
code along with a small subset of our DR6 data selection suitable for
demonstrating the methodology is available at
http://www.sdss.jhu.edu/∼carliles/photoZ/.
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of being applicable to arbitrary unknown data distributions
with strong theoretical support and some informal empirical
confirmation using highly skewed synthetic data. Theoretically
speaking, our estimates are means, and thus there is a central
limiting effect regardless of the distribution of the underlying
errors—the underlying process need not be Gaussian. And
though a rigorous theoretical explanation for why our process
works as it does is much more subtle than just applying the
central limit theorem, this is still the strong tendency and the
reason that a good characterization of the error distribution is
possible. A rigorous theoretical explanation of why the process
works as it does is forthcoming.

More generally, RF regression is appealing because it over-
comes several crucial weaknesses of other regression tech-
niques. As with other non-parametric techniques, RFs impose
no statistical model on the underlying data. Parametric methods
all require a model which must be well suited to the underlying
data distribution in order to perform well. Other non-parametric
methods almost invariably side-step the issue of error estima-
tion entirely. In contrast, RFs yield reliable error distribution
estimates even on data with highly skewed noise distributions,
and there is strong theoretical support to explain this behav-
ior. Thus, RF regression offers a robust error model in addition
to the flexibility of non-parametric methods. Furthermore, RFs
have been shown to converge to a limiting generalization er-
ror (Breiman 2001). Lastly, in the course of developing our
own forthcoming RF code, we have discovered that RFs can
be implemented in a computationally much more efficient and
scalable way than the widely used R version.

RF regression improves the utility of redshift estimates by
giving us good measurements of the estimation error, and thus
compares favorably to other methods giving comparable esti-
mates. Care should be exercised in estimating the per-object
variance of the estimation error, and it may be necessary to es-
timate a scaling factor of the variance estimates empirically for
each new training set and RF configuration. Given the perfor-
mance and the reliable per-object estimation error distributions
offered by RFs, they represent an attractive alternative to other
photo-z methodologies. Future work will likely include extend-
ing the RF technique to provide a redshift distribution estimate
rather than a single scalar estimate, improving the quality of es-
timates (for instance, by weighting training object contributions
according to quality measures such as magnitude errors), and

attempting to extrapolate to new objects not represented by the
training data.
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and the Gordon and Betty Moore Foundation as part of the
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