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A Relationship Between Quantization and
Watermarking Rates in the Presence of Additive
Gaussian Attacks

Damianos Karakgdviember, IEEEand Adrian Papamarcoivember, IEEE

Abstract—A system which embeds watermarks inn-dimen- requirement which is often expressed in terms of a distor-
sional Gaussian data and distributes them in compressed form tion constraint.
is studied. The watermarked/compressed data have to satisfy a
distortion constraint, and the watermark has to be recoverable * Robustness:Although an attacker could possibly intro-
in a private scenario (in which the original data are available duce distortion (e.g., through additive noise, quantization,

at the watermark detector). The performance of the system in
the presence of additive Gaussian attacks is considered, and the
region of achievable quantization and watermarking rate pairs

digital-to-analog (D/A) conversion, etc.) into the stegotext
and thus create a forgery, the hidden message should still

(Rg, Rw) is established. Moreover, two surprising facts are be detectable. In therivate detection scenario, the cover-
demonstrated: 1) at low Rq, the maximum achievable Ry is text is available to the detector; in theblicscenario, it is
the same as when there are no attacks; and 2) at high (but finite) not.

Rg, the maximum achievable Rw is the same as when there is

no compression({Rg = oo). Finally, the performance of related Information hiding has also been studied from an infor-
schemes is also discussed. mation-theoretic perspective, notably in [6]-[15]. The model

Index Terms—Capacity, compression, copyright protection, {reated in this paper, which involvgsint watermarking and
Gaussian noise, Gaussian source, quantization, rate-distortion compression, has received less attention in the literature. A

theory, rate region, watermarking. brief summary of our model follows.

Due to bandwidth or storage constraints, a compressed digital
version of the watermarked data is desirable. To that end, the wa-
termarker encodes the covertext and the watermark index jointly
O VER the last decade, considerable attention has been gg» representation vector in a source codebook, which becomes

voted to information hiding as a means of preserving owine (compressed) stegotext. The number of possible watermarks
ership of intellectual property in multimedia data. Numerous afs onRw while the size of the source codebook2ig®e : we
ticles (e.g., see [1]-[3]) and books (e.g., [4], [5]) explain thea|| Ry, the watermarking rateand R, the quantization rate
basics of information hiding (commonly referred to as watefrhe index of the stegotext in the source codebook is then trans-
marking), explore its many practical applications, and evaluaigtedt to the customer, who has either access to the source
the performance of various watermarking schemes under a ¥ggebook and can reconstruct the stegotext, or else obtains the
riety of attack scenarios. reconstructed stegotext through a local, high-speed, link. The

In general, an information hider (evatermarkej embeds & compression scheme complies with the aforementioned trans-
message (known agatermarl into an original document (also parency and robustness requirements, in that a distortion (fi-
referred to as theovertext[6]). The result is a watermarked gejity) constraint is met, and the watermark is recoverable after
document also known asegotexf6]. The stegotextis subject o an attack on the stegotext. Our analysis assumes that the attack
manipulation by a maliciouattacker who produces éorgery. s in the form of additive Gaussian noise, and that the watermark
The goal of the attacker is to make the watermark undetectaigcoder has access to the original covertext (private detection).
from the forgery. Careful design of the watermarking system cathe main objective of this paper is the determination of the set
minimize the chance that such an attack will be successful. 4f 1| allowable rate pairéRo, Ry ).

Two key issues in the design of watermarking schemes are agyr study of this problem is motivated by the following sce-
follows. nario (see Fig. 1). A news source owns a large number of high-

« Transparency: The hidden message should not interfergesolution images and video sequences which it subsequently

perceptually with the covertext. The quality of the Stegdj.is.tributes to variou; news outlets such as newspapers, tele-
text must thus be comparable to that of the covertext,V4ion broadcast stations, and other media organizations. The
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News | when the covertext is independent and identically distributed
Cfg:;,gi,k Storage (i.i.d.) Gaussian and an average quadratic distortion constraint is
Stegotext | | Index satisfied, the region of allowable ratgB,, Rw ) (for the no-at-

tack case) is given by
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whereR,, is the quantization ratd?yy is the watermarking rate,

Py is the covertext variance (per dimension or pixel), &hds

the average quadratic distortion between the covertext and the
compressed stegotext. Since this result is subsumed in the anal-
outlet in the form of a source codebook index. The news Outﬁis of this paper, no further discussion is in order here except
decodes the index using the source codebook, thereby obtairfifdthe following observation. The rates above are compatible
the (compressed and watermarked) image or video sequence@h a naive encoding scheme wherebiy bits are used to

eventual publication. The source wishes to ensure that its watgkcode the watermark index an(Rg — Ry ) bits to represent
mark is tamperproof, i.e., it is resilient to deliberate attacks @Re covertext, where

the published stegotext.
A key assumption of the above attack model is that the at- 1 -
tacker has no access to the source codebook used in generating Rg—Rw > S log| — |-
: 2 D
the stegotext from the covertext. If the attacker uses continuous

distributions (e.g., the additive Gaussian noise in our case), thgl), standard rate-distortion theory for i.i.d. Gaussian sources,
with probability one, the resulting forgery will be different fromiere are enough bits to represent the covertext with average
every representation vector in the source codebook. Thus, fi&ortion equal toD. Yet this scheme is entirely inadequate
occurrence of an attack will be easily verifiable. A successful gy m a watermarking (or information hiding) perspective, since
tack is one that renders the embedded watermark undetectaplg reconstructed data do not contain the watermark in any form
thereby challenging the ownership of the document. whatsoever.

The main problem treated in this paper combines elements ofan interesting compression/watermarking scheme developed
source and channel coding. Indeed, the covertext and the wagsf-Chen and Wornell [12] igjuantization index modulation
mark are jointly compressed using a source codebook; and tigm), where an ensemble of quantizers—each corresponding
watermark, viewed as a message, must be recoverable aftefag particular watermark index—is used for compressing the
attack, which can be easily modeled as a transmission chanfgfertext. Theegularversion of QIM, in which the stegotext is
(the additive Gaussian noise channel in our case). Since a sin@thmunicated to the user as an index in a source codebook, is of
encoder—decoder pair is used for the entire system, it is imp@stevance to our work and will be studied further in Section IV.
tant to differentiate between this model and the general classaqfawses of other compression/watermarking techniques can be
problems treated ijpint source-channel codinSCC) [16].  found in [18], [19].

In JSCC, the key objective is to design an encoder which|n summary, this paper contains final versions of results in [9],
maps source sequences directly into channel input sequenges), together with extensions to the important case where the
and a decoder which maps channel output sequences diregyhpressed data are subjected to additive memoryless Gaussian
into source reconstructions that satisfy an average distortigtacks. The main contribution is a coding theorem which estab-
constraint. Joint watermarking and compression, on the othighes the region of all achievable rate pdiRs,, Ry ) such that
hand, has two objectives: 1) reconstruction of sieircese-  the average per-symbol quadratic distortion between the cover-
quence within specified distortion at tlescoder outpytand text and the compressed stegotext does not exceed a threshold
2) recovery of an embeddetdessageat the decoder output D, and the watermark index is detectable with high probability
Also note that, at least in the private scenario, the decoder has private scenario, i.e., assuming that the covertext is avail-
the covertext (source) available as side information. Informable to the detector. Achievability results are also presented for
tion about the source is typically not available at the decodgsgular QIM in thepublic scenario, as well as for certain addi-
in most JSCC problem formulations; recent work [17] on JSCfive watermarking schemes.
with side information (about the original source) at the decoderThe paper is organized as follows. The description and in-
may have some implications on watermarking. terpretation of the rate regiocRp p, consisting of achievable

Previous work involving joint watermarking and comprestRq, Ry ) pairs is given in Section Il. The coding theorem that
sion [9], [14], focused on the case where the watermarked/coestablishesRp, p, is proved in Section lll. Section IV con-
pressed data were not subject to attacks (compression inheretatiys achievability results for other schemes that combine wa-
introduces degradation, but cannot be construed as a malicitersnarking and compression. Extensions, conclusions and di-
attack of the type studied in, e.g., [6], [7]). It was shown thatections for further research are given in Section V.

Fig. 1. An application of joint watermarking and compression.
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Fig. 2. The watermarking/authentication system with quantization.

Il. THE RATE REGION

The watermarking/quantization system under consideratibig. 3. The rate regioR p, p, of achievable rate pailRq, Rw ).
is shown in Fig. 2. In the embedding proce&d, is the i.i.d.

n-dimensional Gaussian covertext of (per-symbol) varidhce for Rq in the interval

W is the watermark index (independentf) which is uni- 1 Py \Py — D)

formly distributed over a set of sizZ# % ; andY ™ is the (quan- [ log (max {1., 3} T)
A

tized) stegotext which can be found in a source codebook of
size2"Re  (Since delivery of the watermarked data to the cus- 1 log <1 + Po+D + &)]
tomer is noiseless, there is no need to explicitly show the source 2 D D
codebook index in Fig. 2.) The attack is modeled as additive i.e., the projection o3C on the R-axis.

i.i.d. Gaussian nois& ™ of (per-symbol) variancé 4, and is » The half-lineC.. which is parallel to theRy-axis and
assumed independent bf*. The watermark decoder outputs has vertexC. The Ry -ordinate onC., is given by
W, its estimate of¥. The transparency and robustness require- % log (1 + D%)

ments are expressed via the following constraints:

Two key conclusions can be drawn from Fig. 3.

-1 n ()2
nTEUT =YY" <D @  For quantization rates

(3]

1 |Py — D]
The converse and achievability results of Section Il establish 5 log <max {1’ f} D >]
the regioriR p, p,, of achievable rate§R, Ry ), as expressed
in (3), shown at the bottom of the page, where

and
RQ €

Pr{W # W} — 0, asn — oo. (2)

the watermarking rateRy, can be as high as
Ro — [L1log (Z£)]", which is the maximum wa-

Pur() A ¥(Py + D) —2Py +2\/Py(yD — Py)(y — 1) termarking rate for the case of no attadR{ = 0). In
wi\T) = 2 other words, at low quantization rates, Gaussian attack
Y
(4) noise does not degrade the performance of the system.

and[]* 2 max{0, -}. Rp, p, is the shaded region in Fig. 3. « When

Its upper boundary is composed of the following elements. Py+D Py
« The segmenti B on the straight line D4 D
Py the maximum watermarking rate is constant and equal to
Rw = Rg — { log ( D )] % log (1 + D%).This expression makes sense in the case

Rg = oo, where the distortion in the original cover-

* The curved segmeritC defined by the equation text is solely due to watermarking, and whdperepre-

Ry = max sents the “signal” power in the additive white Gaussian
ve [max{1, %},22%} noise (AWGN) attack channel of variande,—hence
the familiar expression for the capacity of that channel.

mind R — 1 log(7) 1 loe (1 + Py () It is surprising that in the casBy < oo, there exists a
QT 5 0B\ 5 08 D4 quantization rate threshold above which quantization does

1 Py\17* 1 Pw
Rp.p,=X (Rg, Rw): R > | = log v , Ry < max min § R —= log(y), = log [ 1+ (1)
D 2 D ra 2 2 Da
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not hinder the detection of the watermark, i.e., the water- The proof of Theorem 3.1 consists of two parts; the converse
marking rate can be as high as in the case of no comprasd the direct part. The converse part states that no rates outside
sion. Rp, p, are achievable; the direct part states tRaf p, is in-

deed achievable. The two proofs can be found in Sections IlI-A

lll. THE CODING THEOREM and Ill-C, respectively.

The coding theorem which establishes the region of a@. Converse Theorem

achievable rate pair§R,, Ry ), consists of a converse and a The converse theorem is stated as follows.
direct (achievability) part. First, some definitions are in order. o
Theorem 3.2:For any(2"Fe 2nfw 1) code that satisfies

Definition  1: A (2"fe, 2", n)  quantization/water- (1) and (2), the rate paitRq, Ry) mustlie inRp. p, .
marking code consists of the following elements. Proof: Lete > 0. We assume that the watermark index

» A watermark setM,, = {1, ..., 2w}, W is uniformly distributed in{1, ..., 2"fw} thatPr{W #

« An encoding functionf: M, x U™ — Y™ which W} < ¢, and that the distortion constraint is met with equality
maps a watermark indexv and the covertextu” 1 <& -
to a representation sequengé taken from the set EZE(Ui -Y)*=D. )
{"(1), ..., §"(2"Ra)}. =L

* A decoding functiory: 2™ x U™ — M, which maps
the output of the channel® and the covertext™ to an
estimatew of w.

By virtue of the monotonicity of the regioRp, p, in D, the
constraint can then be relaxed to an inequality, as in (1).
SinceU™ is i.i.d. Gaussian, a standard converse rate-distor-
A tion theorem (e.g., [20]) yields
Here,l = Y = Z = RR. For randomW andU", we have 1 X 1 Pyt
the random quantities™ = f(W, U™) andW = g(Z™, U™). Ro>—-IU"Y") > |- log . (6)
- . N . n 2 D
A definition of a public quantization/watermarking code would ) : o
be similar to the above, except that the decadenuld take as This establishes the lower bound @i, in the definition of
input only z™. Rp, D4 . ] ] )
At this point, we define the inner product between two
Definition 2: The probability of error in detecting watermarkyandom vectors™, T" as
w IS given by L
A
S™ T = — FE[S;T;]. 7
(87, T") =~ E[S/T)] Y]

=1
Furthermore, the average probability of error for decogées We further define the following quantities:

Pe(w) = Pr{g(2", U") # w|Y" = f(w, U™)}.

given by Py A <)A/n7 YAvn> 8)
1 A
_ - AU™, Y™
P = g P w2 G ®
w Y
and is equal t®r{W # W} when the watermark indel’ is A 2 (o, ym) (10)
uniformly distributed in{1, ..., 2w}, Py
Definition 3: For a (2"fa, 2nFw p) quantization/water- Al ¢ Ao
marking code, the average (per-symbol) distortion is given by Py =7 z_; E [<Ui ~ 1oY3) ]
_ n n vn\\2
D=E|n ' (Ui - f(W, U");)? _p, WY (11)
i=1 Pff
assuming thaltV is uniformly distributed in{1, ..., 2nfw 1},

al o o
i _ ! _ Py 2-3"E [(Y - /\OUi)Z}
Definition 4: A rate pair (Rg, Rw) is achievable for i

distortion constraintD, if there exists a sequence of quan- (", YY)

tization/'watermarking codes(2"Re, 2"Bw p) such that =Py — (12)
max,, P.(w) tends to0 asn — oo andD < D. Moreover, a Py
rate regioriR of pairs(Rq, Ry ) is achievable if every element A Py P
of R is achievable. =P -~ P (13)
Uy YU
The coding theorem is stated as follows. where the second equalities in (11)—(13) are straightforward

Theorem  3.1:A  quantization/watermarking code SONSEAUENCES of previous definitions.

(2nFe onBw ) satisfies the transparency and robust- The upper bound oy will follow from four lemmas. The
ness requirements (1) and (2), respectively, if and only fifst lemma provides a lower bound dU™, Y™) in terms of
(Rg, Rw) € Rp,p, (WhereRp p, is defined in (3)). ~ defined above.
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Lemma 3.3:Let v be as defined in (13). Then fér" i.i.d. For establishing the lower bound enit suffices to consider
Gaussian, we have (5) and (13). Specifically, from (13) we can easily see that
1 . 1 . -1
~ UM YY) > =1 Un, yn))?
S I(U" Y7 2 5 log(y) 7:<1_<<P/P>>) (20)
~ ~ UL~
with equality iff (U1, Y1), ..., (Un, Y,) arei.i.d. Gaussian. !
Proof: We have the following inequalities: and from (5) we have |
1(U™; V™) = (U™) — (U™ |Y™) (U™, Y") =5 (Pu+ Py = D). (1)
= h(U™) = KU - Mof/nn’}n) Substituting (21) into (20) we obtain
. Py + Py — D)2\ !
> h(U™) = h(U™ — uoY™) (14) y=(1- o+ Py =D (22)
4Py Ps.

where o was defined in (9), and (14) is true because condir.an be easil
tioning reduces entropy. Next, we have

n" h(U™ — pY™)

y shown that (22) is minimized whgp = | Py, —
D|, and the minimum value isiax {1, £}, as required. O

The third lemma establishes a relationship betwep, and
Py (v); note thatPYlU is defined in (12) whilePy (v) appears

< - Z (Ui — poYi) (15) " in (4).
Lemma 3.5: For any allowable value of
s—Z > log(2me) B [(U — po¥:)’] (16) Py < Pw() (23)
v.vherePW(y) a”de/w were defined in (4) and (12), respec-
1 tively.
< ;5 log(2me) ZE [ ~ i) } (17) Proof: From (13), we have thaPy, = Py ;. Substi-
tuting into (22) we obtain
1 2 -1
= 5 log(2me)Pyyy (18) (PU +7Ppy — D)
where (16) is true because the differential entropy of a contin- v=11- 4pU7py|U (24)

uous random variable is upper-bounded by the differential en-
tropy of a Gaussian variable with the same variance [20]; (17)$®lving for P, o yields

a consequence of the concavity of thg(-) function; and (18)
is due to (11). Hence, from (14), (18), and (13), we have P. 1Py +D)-2Py + Z\Q/PU('YD - Py -1)
5

viu =

(U YT) 2 5 log ( PUW) = 5 log(v). (19)  The larger of these two values is equalig (4). thereby com-
leting th f. n
Note that all relationships up to (17) hold with any scalar ré)-e 'ng fhe proo

placing . The value defined in (9) satisfies the orthogonality The fourth lemma involves two chains of inequalities corre-
condition(Y™, U™ — oY ™) = 0 and, thus, yields the minimum sponding to the two upper bounds & .

mean-squared error (MMSE) (equalfp,y-) in estimatingl" Lemma 3.6:For all ¢ > 0 such thatPr{W # W} < ¢, we
by a scalar multiple o ™. Thus, among all choices of scalarspaye
wo as defined in (9) yields the tightest possible bound in (19).

We also have the following conditions for equality: in
(14), iff the random vectol/™ — Y™ is independent of and

RW’SRQ—TL (Un n)+

Y™, in (15), iff the variablesU; — uoY; are independent; Ru <1 log (1 N PYU) ‘e
in (16), iff U; — poY; is Gaussian for every; and in (17), - D4
iff E[(U; — poYi)?] takes the same value for eveiyt is Proof: The first chain of inequalities is as follows:
straightforward to show that these four conditions are JomtIyR —n ' H(W|U™, V™) (26)
equivalent to(Uy, Y1), ..., (Uy,, Y,) being i.i.d. Gaussian, A A
and, thus, the proof is complete O = I(W; Y |U™, V") +n 't H(W|U™, Y™, V")
The second lemma establishes the range of possible values <o 'I(W; Y"|U", V") +n *H(W|U", Z") (27)
fy. .
oty < U(W; YU, V) 4o (28)
Lemma 3.4: Under the distortion constraint (5), the range of e Sntrm rm L ridm " om
v is the interval[max{1, £}, 22fe]. =nHYU", V) = HY" W, U", V") + e
Proof: From (6) and Lemma 3.3 we have =n THY™|U") + ¢ (29)
1 ~ 1 . . .
Rg > —I(U"; Y") 2 5 log(7)- =n THEY™) —n (HY™) - HY"|U™)) + e

Hence;y < 22Fe, thus establishing the upper bound-an <Rg—n"'I(Y"; U™) + (30)
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n='E||U™
monotonically untilp = ¢,,.. (case (c)).

where (26) holds becaugé€” andV™ are independent ofV;
(27) follows from

HW|U™ Y™, V"= HW|U", Z*, Y™, V")

< HWIU™, Z7);

(28) is a consequence of Fano’s inequality; (29) holds because

H(Y™W,U", V") =0

(sincef/" is a function of W andU™) andV™ is independent
of U™, Y™, and (30) follows fromR > n 1 H(Y™).

The second chain of inequalities is as follows (whegavas
defined in (10)):

Ry =n"'H(W|U") (31)
=n ' I(W; Z"U™) +n " HW|U™, Z™)

<nT'I(W; Z"|U™) + ¢ (32)
=n " h(Z"|U™) =0T (2" U™, W) + €

=n " W(ZMU™) =0T R(Z" = YU, W) 4+€e  (33)

=n"th(Y" AOU”+V”|Un) nThR(V") + e (34)

<nTIR(Y™ = AU + V™) — 5 log(2me)D4 + €
1 1

< 3 log(2me) (Ple + DA) ~3 log(2me)D4 + € (35)
1 P,

:—log<1—|— )U>+6 (36)
2 A

where (31) holds becaudé™ is independent ofV; (32) fol-
lows from Fano’s inequality; (33) holds because is a func-
tion of U™ andW; (34) follows from the independence &f*
and(U™,
equalities similar to (15)—(18).

From (30) and (36), the lemma follows. O

(b)

Fig. 4. The second-moment spafe spanned by vector§™ andY™, shown for three different values @f The circleC is the locus of ally"™™ such that

1975

—Y™||2 = D. As ¢ increases fron, Py () increases monotonically (case (a)) until it reaches its maximum valgease (b)), then decreases

The proof of the converse result can now be completed as

follows:
)}

(37)

> }-i—e (38)
> }+e (39)

where (37) is due to Lemma 3.6; (38) follows from Lemmas 3.3
and 3.5; and the maximum in (39) is taken over the range of
values ofy established by Lemma 3.4. By taking— 0, the
converse is proved. O

Y

Ry
W Da

1 A
< min{RQ——I(U"; Y™, = 10g<1+
n

Py (7)
D4

IA

1 1
min{RQ— 5 log(y), 3 log <1+

max
e [max{l, % } 2”@}

IN

Py ()
D4y

1 1
. min{RQ -5 log(7), 5 log <1+

B. Explanatory Remarks

1) Geometrical ConsiderationsA geometrical interpreta-
tion of the arguments presented in the proof of the converse the-
orem can be obtained by considering thespace spanned by
the vectord/™ andY ™, with inner product defined in (7).

The geometry of this space is depicted in Fig. 4. The vector
Y™ lies on a circleC centered at/™ and having radius/D
corresponding to the distortion constraint (5). The lengthig'bf
andY™ are given byy/P; and /Py, respectively, where”;.
was defined in (8). The angle between the two vectors is denoted
by ¢ and is assumed to take valueg(n =], as usual.

Note that Fig. 4 is drawn for the cage< Py, which is a safe
assumption in most practical applications. The maximum value
of ¢ is then¢,,,..x < 7/2, and is obtained wheR™ is tangent
to C. The maximum value ofin?(¢) is also

W); and (35) is easily established using a chain of in-

D

sin? (Pmax) = P
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In the caseD > Py, the circleC encloses the origin and, thus,are 3 log(1 + % min{1, £-}) and § log(1 + £-), re-
the range of values af is the entire interval0, 7]. Then the spectively.
maximum value ofin? ¢ is unity. Combining the two cases The first argument ofnin{-, -} in (40) involvesRg and de-

together, we have that the maximum valueiaf* () is creases monotonically frofi, — [4 log(£5)] " to zero asy
D ranges over the intervfihax{1, £&}, 228] of maximization
min {1 —} in (40). Plotted againsg log(7), it yields a line segment of
v slope—1 (in Fig. 5), whose position on the graph depends on
and thus the minimum value of = sin™?(¢) is the value ofRq. ' _ .
The behavior of, (Rg) asR varies can be examined with
Py the aid of Fig. 5. There are three regimes of interest:
max4q 1, — - . . . . .
"D a) In the first regime, the straight-line segment lies entirely

below the curve (Fig. 5(a)). The maximin in (40) is then given

as in Lemma 3.4. by the maximum ordinate on the line segment, i.e.,

As we argued in the proof of Lemma 3.3, the valugsand
1o, as defined in (10) and (9), respectively, have the following 1 Py
interpretation:\oU™ is the projection ofy’™ on U™, or equiv- rw(Rq) = Rq — [5 log ( D )}
alently, the MMSE estimator df ” among all scalar multiples
on U™; and similarly, u oY ™ is the scalar MMSE estimator of This occurs for
un givenf’" PY|U andP Uly, as defined in (12) and (11), re-
spectively, are the resulting MMSE errors. As was seen in tﬁ?@ c H log (Puﬂ Lo <maX {1 } | Py — |>]
proof of Lemma 3.5Py () is the larger of two possible values 2 D D Dy
of Py, corresponding to a particular value pf(other thant _ S _
or Py /D). Fig. 4 clearly illustrates that, in the cage < Py, b) In the second regime, the straight-line segment intersects
there are two possible positions Bf* on C for each value of the rising portion of the curve (Fig. 5(b)). The maximin in (40)
¢ smaller thanpmay (correspondingly, for each greater than is then given by the ordinate at the point of intersection (this
Py /D). The position farthest from the origin is marked in Fig.#alue is given by the root of a cubic equation). This occurs for
(a) and (b), and the length of the error veciot — A\ U™ is

1 |Pu—D|

shown as\/ Py (7). Rpe { log <max {1 3} D )

2) The Upper Boundary of the Rate Regiolm: this part, we A

examine the behavior of the upper bound®® as a function 1 log <1+&+ (PU+D)>:| )
of RQ 2 D D4
v (Ro) A max c) The third regime corresponds to all other values?gf,
Py 2R namely
vE |:max{1 F} 2 Q:|
Py Py + D
_ 1 1 Pw(v) Fo>3 lo’g<1+fb+(UD—)>'
-min ¢ Ry — 3 log(~), 3 log 1+ ——= D . (40) A

) ) ) ) ) In this case, the straight-line segment either intersects the curve
Note that sincefi, is variable, the range of interest faris o its falling portion only (as in Fig. 5(c)), or does not intersect it

[max{1, Py/D}, o0). ) ) L at all. The maximin value in (40) is then given by the maximum
The second argument afin{-, -} in (40) is independent of . 4inate on the curve. ie.

Rg and monotone irPy (). From the proof of the converse

theorem above, we know thgth ) is the length of the error (Ro) =~ log (14 =
vectory™ — AoU™ whenU™ andy™ are as shown in Fig. 4, with rwilie) = 2 08 Dy
sin~%(¢) = ~. Clearly,r/Pw () increases monotonically s

increases from = 0 to Note that this upper bound oRy also follows by a simpler

argument, namely, thaty;, can be no higher than the capacity

¢ = arctan(y/D/Py) = arcsin(y/D/(Py + D)) of an AWGN channel with signal (i.e., watermark) poweand
noise powerD 4 (when no quantization noise is present, i.e.,
then decreases monotonicallyagcreases to Rg = ).
. . The three regimes obtained above correspond to the three seg-
Pmax = arcsin(min{1, /D/Py}). mentsAB, BC, andC,,, of the upper boundary R p_p, de-

scribed in Section IlI.

Note: In the special cas® 4 = 0 (no attack), the curve in
Fig. 5 is displaced tetoo and only the first regime remains,
i.e., the bound oty is simply Ry < R — [3 10g(%)]+.
value), and then decrease$tarhe funcuon log(1+ Pw (”)) The converse theorem then reduces to the channel coding part
has similar behavior, and is plotted in Flg 5 aga%ﬂbg of the converse theorem in [21], and also the converse theorem
The initial (leftmost) and maximumyy -ordinates on the curve of [14] for R = 0.

Equivalently (but in the reverse direction), asncreases from
v = max {1, £¥} toy = 1+ ¥ and then on to infinityPyy (v)
increases fromPy — D| - min {1 D } to D (its maximum
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Fig. 5. Plots ofRg — % log(7) andé log(1 4+ P‘g—("')) and determination of the maximin point for various valuesef.

C. Direct Theorem
The direct theorem is stated as follows.

Theorem 3.7:For any rate paitRy, Rw) € Rp, p,, there

exists a(2"fie, 2nfw n) code such that (1) and (2) are satis

fied.
Proof: As required forRp_ p,, we limit the quantization

rate to
1 +
raz |30 (3)]

We use a random coding argument, where the watermark in
W is assumed uniformly distributed ifil, ..., 2"%w}, The

Py

D

technique is similar to the private version of regular QIM [12], ;- = _
in that2"®w quantizers, each one indexed by a different water-~ V"’

mark, are employed.
Codebook GenerationLet

Pul or
1, — 5, 2779 .
v E [max{ "D }

Asetof2"Fa iid. ~N (0, vPw (7)) Gaussian sequences is
generated and partitioned ir@8%w subsets 02"+ sequences
each, i.e.,

(41)

RQ = Rw + R;.

The wth subset, consisting of sequencés(w, 1), ...,

Y (w, 2"1) becomes the codebook for theh watermark.
Watermark EmbeddingGiven U™ and a deterministiav,

the embedder identifies within theth codebook the first code-

word Y™ (w, q) such that the paitU™, Y"(w, q)) lies in the

setT,, 1 (€) of typical pairs with respect to a bivariate Gaussian

Slistributionp,; ;- having mean zero and covariance

Py
V(v =1)PyPw(v)

The output of the embedder (encoder) is denoted byw) =
Y"(w, q). If none of the codewords in theth codebook is
jointly typical with U™, then the embedder outplﬁ@(w) =0.
In this mannerR"*w watermarked versions of the covertéxt

V(= 1)PyPw(7)
vPw ()
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are obtainedY™(1), ..., Y"(2"Bw), Clearly, for randomi¥’, Behavior of Pr(E;): From standard rate-distortion the-
the embedder output & (W). orems [20], we know that ifR, > I(U;Y) (the mutual

Note that the second moments)ifb1 are consistent with information of the bivariatep;, ;- defined above), then
the geometry of Fig. 4, with = sin—?(¢). Specifically, if the Pr(E1) — 0asn — oco. SinceR; = Rq — Ry from (41), and
pair (U™, Y™) lies in Ty, s (¢), then the empirical second mo-(U; v)y=1 5 log(v) from (42), it follows thatPr(E;) — 0
ments provided that

=1 =1 =1 Behavior ofPr(E,): To show thalr(E,) — 0, it suffices
are withine (or a factor thereof) of the average values showi® show that the tripletU", Y™ (1), Z") lies in Ty, - , with
implicitly in Fig. 4. This also means that the distortion constrairitrobability approaching unity asymptotically. In the previous
(1) is essentially met (sineedifferences can be safely ignored)Paragraph, we showed that

Decoding: Again, the decoder has access to the covertext n on

U™. Upon receivingZ™ = Y"(W) + V", the decoder seeks Pr{(U", Y"(1)) € Ty y} — 1.
among all watermarked versiohig (1), ..., Y"(2"Fw ) of U"
a singleY ™ (1) such that the trlple(U” Y"( ), Z™) lies in
" . (€),the set of typical triplets with respect to the trivariat

SinceZ" =Y "(1)+V™ andV" is independent ofU™, Y (1)),

it follows easily that the empirical correlations obtained from
uy,z ? n_Yn(1), Z") are withine (or a factor thereof) of the corre-

Gaussian distributiop,; y- , having zero mean and covarlancespondmg entries ok, ;. , with probability approaching unity

matrix Ky, v .z, shown at the bottom of the page. If a unlqu"f‘:\symptotlcally Typ|caliiy with respect o, v 2 thus holds

otherwise, the decoder declares an error. Behavior ofPr(Es):

Note thatpU v 7w, 9, z) = Py, v (u, 9)pv(z — 9), where
pv is the marginal of the attack noisé™. The quantities Pr(Es) = Pr {3w #1: (U™, fm(w), ") eTy, v Z}
of interest here are the determinants;, .| = PuPw(7v), Y
|KU72| = PU(PW’(’Y) +DA), and|KU7Y7Z'| = PUDAP‘/V(’)/), 2nRw

as well as the mutual information values < Z Pr {(U”G Y™ (w), Z") € TU,Y,Z}
w=2
1 PU’YPVV(FV) _ 1 X nRw n vn n
I(U;Y) = 51 8<W —5108(’7) (42) = (2nfiw —l)Pr{(U ,Y™(2), Z )ETU,f’,Z}
and where the last equality is due to the symmetry of the random
. 1 Ky z||Kyy code statistics. Since
1 210 = L 10 [ Kv2 oyl
2 PolKys.z] Pr{(U" Y™(2)) €Ty 4 } —1
) U Y
R 14 2wl (43) , . .
T 9 Dy ) and by constructionZ™ = Y"(1) + V" is independent of

Y™(2) givenU", a standard argument (cf. the proof of [20, The-
Error Events: Without loss of generality, we assufié = 1. orem 8.6.1]) yields
We then have the following error events.
« B1:Y™(1) = 0, i.e., there exists ng € {1, ..., 2"} Pr{(U Y7(2), 27)
such thatU™, Y"'(L, q)) € Ty, y- where the conditional mutual information is computed with re-
« E,: There exists a¥"(1,q) = Y"(1) such that specttothetrivariatg,; y- , defined earlier. From (43), we have

(U™, Y"(1)) € Ty, ¢, bUt(U™, ¥7(1), 2%) ¢ T, 5 ,. et

eT,

" Y,,Z} < 9=n(I(Z Y |U)=(</2))

. N 1 P,
* B3 (U™, Y™(1), Z") € Ty 5, , but there also exists a I(Z;Y|U) = 3 lo <1+ ‘;)( )>
k> 1 such tha(U™, Y™(k), Z") € Ty, 3 , 4
o and, thereforePr(FE,) — 0 provided
The probability of error is then
1 Py (v)
Pr{W # 1} = Pr(E1) + Pr(Es) + Pr(Es). Fw < 5 log (1 . ) (45)

Py VO =DPyPw(y) /(v —1)PuPw(y)
v,z = | VO —1)PrPw(y) vPw (7) vPw (7)
V(= 1)PyPw(7) vPw () YPw(v) + D4

K
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From (44) and (45) it follows thaRy; is achievable provided the direct theorem of Section Il mappét? to one of2nfw
representation vectors, each taken frodifeerentcodebook.)

Ry < min {RQ ! log(v), 1 log (1 + PWW))} As dispussed in [12], achievable. rates for regular QIM (also

2 2 Dy called “hidden” QIM) under constraints (1) and (2) can be found

] P o (46) using a single-letter formula developed by Gel'fand and Pinsker
Choosingy € [max {1,%¢},2?fe] so as to maximize the 155

right-hand side of (46), we can achieve the whole region
Rp.Das- R=I(T; Z) - I(T; U).

We have thus proved that {2g, Rw) € Rp, p, then the
average probability of error, over the ensemble of random codegre, R is an achievable channel code rate for a memoryless
vanishes asymptotically with. By a standard argument, theréchannel with input variablél (not shown in the above formula),
exists a deterministic code that achie®s, p , with arbitrarily  output variableZ, and i.i.d. channel side informatidi” avail-
small probability of error (averaged over all the messages); agfle to the transmitter (only). is an auxiliary i.i.d. random vari-
the codebook can be then expurgated to make the maximal prgBre which can be chosen (together withso as to maximize

ability of error arbitrarily small. O R subject to the Markov constraifit — A, U — Z. The proof
of the direct (achievability oR) result in [22] employs approxi-
IV. PERFORMANCE OFOTHER SCHEMES mately2!(T: 2) auxiliary sequences™ generated randomly in

In this section, we present achievability results for certafy -1-d- fashion. In the context of QIM, the memoryless channel
schemes that combine watermarking and compression. Speigiffone other than the attack channel; the auxiliary sequences
ically, we investigate the relationship between watermarki e.the source codewo.rds themselves; and' the S'd? |nformat|on
and quantization rates in the presence of additive memoryld§s IS the covertext. This leads to the following relationships:
Gaussian noise, for the following systems.

Ro=IY;2)=I1(Y;Y +V 47
* Regular QIM [12], where no knowledge of the covertext @ (Vs 2) (V3 ¥+ V) “7)

is available at the decoder (public scenario). Rw =[I(Y; Z) - I(Y; U)]*. (48)

 Additive watermarking, where the embedder computes the

weighted sum of the covertext and a watermark-dependddte trivariate distribution; y- ,(u, g, 2) can be taken as the
gussian in the proof of the direct theorem in Section Ill. Thus,

signal and then compresses the resulting vector using? A A -
universal (watermark nonspecific) quantizer. A private dév, v, z(t 9: 2) = py y-(u, §)pv(z — ), whereU andV =
tection scenario is assumed in this case. 7 —Y are independent with mean zero and varianégsand

D 4, respectively; and” also has mean zero and satisﬁéf —

Although our focus is on achievability results, the rate regioU)Q — D. It should be noted again that the second moments of
Rp, p, derived in Section Il can be taken as an outer bou ,(u, 7, z) are consistent with the geometry of Fig. 4.

on the achievable rate region of both schemes considered in?ﬁf@&é briefly investigate the behavior of (48) &%, (given by
section. (47)) varies. Letting?y- = vPw () = E(Y'?), we have from
A. Regular QIM, Public Scenario “7)

We consider theegular version of QIM [12] (distinct from Ry — 1 log (14 Iy
distortion-compensate@IM), since we require the output of the @75 % Dy
embedding process to be a quantized stegotext (corresponding
to an index in a source codebook). and thus,

Essentially, here we have an ensemble®fw quantizers
and their codebooks. Each quantizer corresponds to a different Py = Da(2*F —1). (49)
watermark index, and covers the entire covertext space with )
9n(Re=Rw) representation vectors (codewords). The watefSO; (48) gives
mark W' is embedded into a covertekt” by quantizingU™ ) N
using theWth quantizer, yielding a representation vecot. _ )
Detection of the watermarld” in forgery Z" entails mapping Rw = {RQ 2 log(v)} ' (50)
Z™ to a representation vector taken from thmeion of the
2"Rw codebooks; the index of the codebook which contair&ettingPA,‘U = Pw(y) = Py /v in (25) and expressing in
that vector becomes the estimaté of the watermarkV. (By terms ofPy, Py, and D, we obtain (with the aid of (49)) (51),
contrast, the private detection scenario used in the proof sifown at the bottom of the page. The achievable region implied

PyDa(22Re — 1) ] )} " (51)

1
Rw = |Rg — = log
" [ QT8 (PUDA(22RQ —1) = X(Py + Da(22Re — 1
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Rw the distortion constraint is betwe&i andl/™ (not betweert' ™

1log (1 4 A) ’ and the argument of the quantizg; compressing™ is equiv-

: Da alent to compressing='Y ™", i.e.,Y" = f(Y") = g(a~tY™).
This effectively eliminates the parametein (52). Also, the pa-
rameters can be absorbed in the power of the watermark. Thus,
we can use the simpler foPm

Y™ = U + 2™ (W).

7 T .
[%Iog (%“)] Rq The watermarker generates a random channel codebook
{X"(1), ..., X"(2"Ew)1 all components of which are i.i.d.
Fig. 6. Inner bounds on the achievable rate regions for public QIM and priv?gaussian with varianc#y; and a random source codebook

Y™(1), ..., Y*(2"%e)}, also i.i.d. Gaussian with variance

?

additive schemesk ., p , is an outer bound on the achievable rate regions o
both schemes. X
Py, where bothPy and Py are free parameters in the model.

Y™ is encoded a¥™ = Y"(q), whereq is the smallest index
such that the paifY™, Y"(q)) is jointly typical with respect to
a bivariate Gaussiam, ;- having mean zero and covariance

by (51) is shown in Fig. 6. The range of valuesity for which
Ry in (51) is nonzero is a subinterval of

2 2
Ly (\/ Py — \/5) Ay (\/PU + \/5) Pot Py (PrAPx)(PurtPy=D)
zlog|l+——+——"— |,z log| 1+ ——F++——"— e ¢
2% Da 2% D4 By = | (ppars)(psry-p) P.
2P, v

_ ) _ Without going into detalil, it is not difficult to show that joint typ-
whose exact endpoints are given by the roots of a cubic. EXprﬁ,sdlity of Y™ andV™ — Y™ (g) implies that the per-letter distor-

sion (51) i; ;hown irj Fig. 6 as the dashed_-dotted curved Iir{ﬁ,n betweerl™ andY™ is, with probability approaching unity,
One can trivially achieve the rest of the region (below the horlj]—0 larger thanD + ¢, which, in turn, implies that the distortion

zontal, dashed-dotted line), by appending extra “*dummy” bits [, it (1) is essentially satisfied. By the usual rate-distortion
the output of the quantizer (thus, increasing the f&$¢. As can argument, taking

be seen from Fig. 6, the watermarking rétg, obtained using .
i.i.d. Gaussian codebooks is positive only for a finite range of Ro=1Y;Y)+e (53)

values ofR? (without appending the trivial bits). Whether there . o . . - i
exists an encoding scheme such that the maximum achievq%rgugzisr (t?/it’ ;/?vgr(lq?)r chaanb':)'teyfiﬂﬂﬁﬂn&ggg{ég #?clﬁ%gg
waterm.arkirjg rate is equal %_)log(l + D%) (for a finite value distortion théory,l(Y- V) > 1o (&)]4‘ with equality if
of Rg) is still an open question. P 0 and P P7 4 D_) 2 108D

X = U= Iy .

B. Additive Watermarking, Private Scenario Upon receivingZ” = Y™ + V™, the watermark detector at-
tempts to find a unique such that the tripletU™, X™(w), Z™)

i€ jointly typical with respect to a trivariate Gaussipfi x, z
ving mean zero and covariance

Additive watermarking schemes (see, e.g., [9], [14]) use
single quantizer which is not dependent on the embedded wal
mark. From a complexity/cost viewpoint, they are particularly
attractive in applications where the same covertext is distributed Py 0 w

to different customers (i.e., the embedded watermark is a finger- S 0 p Px (Py+Py—D)
print identifying the customer), as customers can use the same >~ 7 ~ X 2Py
codebook in order to reconstruct the data. PU""I;{/_D PX(PgIJgPy—D) Py+Dy
In general, additive watermarking reduces to the computatiop, . =~ . . . . . o . .
of g Ve w ng recu pu I?Phls distribution is consistent with,- ;- and the additive noise
distributionpy in the sense thatz 7, x (z|u, ) :_fg Py, y(u+
Y™ = U™ + Bz (W) (52) =, 9)pv(z—19) dy/py (u+=).) Again, without going into detail,
it can be shown that if

whereW is the index of the watermark andt (-) is ann-dimen-
sional signal that does not depend on the covefti&xix, 3 are Rw =1(X; U, Z) ¢ (54)
nonzero scalars. To further compréss, a universal quantizer then the probability of decoding error vanishesias: cc.
(i.e., one that does not depend on the watermark embedded igolving (53) for P, then substituting into (54) and letting
Y™) can be used ¢ — 0, we obtain the achievable watermarking rate of expres-
¥ = ) sion (55), which is nonnegative fak, > [3 log (4%)] *
Equation (55) is maximized wheR;. is equal to (56), yielding
SUbjeCt toan appropriate distortion COUStraint ((1) in this Case)Zln the case of no compression, scaling of the covertext plays an important
The decoder attempts to deté&t given Y™ andU™ with van- role in determining capacity; see [6], [7]. Here, however, compression may in-

ishing probability of error. clude whatever scaling &f " is required in order to satisfy the distortion con-

. . . straint; and the power of the watermakk is optimized to maximize the wa-
_We O_btam an Inner bo_und on the aCh'_evau%v Ryy) re- _ termarking rate. Hence, additional scalinglof by « does not provide an ad-
gion using a random coding argument. First, we note that singional degree of freedom.
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final expression (57) (see (55)—(57) at the bottom of the page)arking strategy, is free to choose any memoryless attack that
The corresponding curve is also shown in Fig. 6 (the regimatisfies the average distortion constraint

below it being an inner bound on the achievable region for this 1 o

additive scheme). As expected, whBp, — oo, Y™ is negli- ~EIZ" —Y"|" < Da

gibly different fromY™ = U™ + X™ and, thus Ry, approaches

the capacity of an AWGN channel. while the watermark decoder (but not the encoder) knows the

statistics of the attack. As is proved in [23], the rate region be-

comes
V. CONCLUDING REMARKS

game

In this paper, we considered a system that watermarks > P4
n-dimensional i.i.d. Gaussian covertexts and distributes them 1 Py\1T
in compressed form, such that an average distortion constraint = {(RQ7 Rw): Rq > [5 log (3)]
is met. We assumed that the compressed stegotexts are further
corrupted by Gaussian attacks. By means of a coding theorem, Ry < max
we established the regioRp, p, of achievable quantization 7el(Re. D, Da)
and watermarking rates such that the error probability in ) 1 1 Py(y) 1
decoding (in a private scenario) the embedded message from a 'mm{RQ_ ) log(v), 5 log <1+ D, ;) }}
forgery approaches zero asymptoticallysirMoreover, we pre- where
sented achievability results for the public version of the regular
QIM scheme, as well as for additive watermarking/quantizatidi( Rq, D, D4)
schemes. A -

The expression oRp p, reveals two surprising facts: 1) = [max{1, Py/D}, 2°"2] 0 {y: vPw(v) > Da}.

at low quantization rates, Gaussian attacks do not degragg further proved that the optimal memoryless attack (from the
the system performance; and 2) there exists a quantizatigfycker's point of view) corresponds to optimum compression

rate threshold above which quantization does not hinder 15 Gaussian source with distortidd, . Similar observations
watermark detection, i.e., the watermarking rate can be as higBre made in [6], [7] for the case of no compression.

as in the case of no compression. Intuitively, these facts can bQ) General Gaussian DistributionsHere. it is assumed
explained as follows: 1) At low?q, the quantization cells aré that: 1) the attack noise is additive and Gaussian but not
large enough, thus, inducing large detection regions; Gaussjgfitessarily stationary (or ergodic), and 2) the coveltgkiis
noise does not, therefore, cause a significant amount of erg9gyssian but not stationary, either. Although the achievable
(in terms of the error exponent). In other words, a detectigg;e region may not have a limit as— oo, the probability of
error is caused mainly due to the degradation introduced by 8o can be made to approach zero for very larg&he proof
compression. 2) There exists a finii, such that the repre- of the coding theorem relies on the fact that general Gaussian
sentation sequences and the corresponding decoding regigRgesses satisfy a version of the asymptotic equipartition prop-

(given the covertextU™) have the geometrical properties Ofyty: more details on this property can be found in [23]-[26].
an optimal code, which achieves the capacity of an AWGN

channel. B. Future Work

For future research directions, we briefly mention a number
of problems. One interesting problem is the determination of
There are many possible extensions to the problem of joitie rate region in a public scenario. Such a region should be a
watermarking and compression treated in this paper. In [23], thebset ofRp p,, but whether it is a proper subset is still an
following problems are investigated and the corresponding raipen question.
regions are characterized. Another interesting problem would be to consider more gen-
1) Game Played Between Watermarker and Attackine eral attacks, possibly with different distortion constraints (e.g.,
attacker, who (presumably) knows the statistics of the wateart the almost-sure type [6] or the large-deviations type [10]).

A. Extensions to Above Model

1 [22Re(2D(Py + Py) — D? — (Py — Py)? + 4D4P,
oL 1og (24D + Py) = D7 = (P~ B 4Da1) 55
2 1Py (2°Fa D, + Py )
Py =—2°Re Dy 4 \/(22Ra D + D)2 + Py(Py + 2D 4(22Re —2) — 2D) (56)
2
L 22RQ<4PU(D+DA)— (D+PU+22RQ Da—+/(22Be Do+ D)2+ Py(Py+2D 4 (228 —2)—2D)) )
R[/V:§ IOg

4PU\/(22RQDA+D)2+PU(PU+2DA(22RQ —2)—2D)

(57)
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Also, as we pointed out in Section |, our attack model assumeig1] VY. Steinberg and N. Merhav, “Identification in the presence of side infor-
that the attacker does not have access to the source codebook, mation with application to watermarkingEEE Trans. Inform. Theory

and, thus, the occurrence of an attack is almost certainly dery,
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