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Abstract—A system which embeds watermarks in -dimen-
sional Gaussian data and distributes them in compressed form
is studied. The watermarked/compressed data have to satisfy a
distortion constraint, and the watermark has to be recoverable
in a private scenario (in which the original data are available
at the watermark detector). The performance of the system in
the presence of additive Gaussian attacks is considered, and the
region of achievable quantization and watermarking rate pairs
( ) is established. Moreover, two surprising facts are
demonstrated: 1) at low , the maximum achievable is
the same as when there are no attacks; and 2) at high (but finite)

, the maximum achievable is the same as when there is
no compression( = ). Finally, the performance of related
schemes is also discussed.

Index Terms—Capacity, compression, copyright protection,
Gaussian noise, Gaussian source, quantization, rate-distortion
theory, rate region, watermarking.

I. INTRODUCTION

OVER the last decade, considerable attention has been de-
voted to information hiding as a means of preserving own-

ership of intellectual property in multimedia data. Numerous ar-
ticles (e.g., see [1]–[3]) and books (e.g., [4], [5]) explain the
basics of information hiding (commonly referred to as water-
marking), explore its many practical applications, and evaluate
the performance of various watermarking schemes under a va-
riety of attack scenarios.

In general, an information hider (orwatermarker) embeds a
message (known aswatermark) into an original document (also
referred to as thecovertext[6]). The result is a watermarked
document also known asstegotext[6]. The stegotext is subject to
manipulation by a maliciousattacker, who produces aforgery.
The goal of the attacker is to make the watermark undetectable
from the forgery. Careful design of the watermarking system can
minimize the chance that such an attack will be successful.

Two key issues in the design of watermarking schemes are as
follows.

• Transparency: The hidden message should not interfere
perceptually with the covertext. The quality of the stego-
text must thus be comparable to that of the covertext, a
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requirement which is often expressed in terms of a distor-
tion constraint.

• Robustness:Although an attacker could possibly intro-
duce distortion (e.g., through additive noise, quantization,
digital-to-analog (D/A) conversion, etc.) into the stegotext
and thus create a forgery, the hidden message should still
be detectable. In theprivatedetection scenario, the cover-
text is available to the detector; in thepublicscenario, it is
not.

Information hiding has also been studied from an infor-
mation-theoretic perspective, notably in [6]–[15]. The model
treated in this paper, which involvesjoint watermarking and
compression, has received less attention in the literature. A
brief summary of our model follows.

Due to bandwidth or storage constraints, a compressed digital
version of the watermarked data is desirable. To that end, the wa-
termarker encodes the covertext and the watermark index jointly
as a representation vector in a source codebook, which becomes
the (compressed) stegotext. The number of possible watermarks
is , while the size of the source codebook is ; we
call thewatermarking rateand thequantization rate.
The index of the stegotext in the source codebook is then trans-
mitted1 to the customer, who has either access to the source
codebook and can reconstruct the stegotext, or else obtains the
reconstructed stegotext through a local, high-speed, link. The
compression scheme complies with the aforementioned trans-
parency and robustness requirements, in that a distortion (fi-
delity) constraint is met, and the watermark is recoverable after
an attack on the stegotext. Our analysis assumes that the attack
is in the form of additive Gaussian noise, and that the watermark
decoder has access to the original covertext (private detection).
The main objective of this paper is the determination of the set
of all allowable rate pairs .

Our study of this problem is motivated by the following sce-
nario (see Fig. 1). A news source owns a large number of high-
resolution images and video sequences which it subsequently
distributes to various news outlets such as newspapers, tele-
vision broadcast stations, and other media organizations. The
watermark identifying the source is embedded into each item,
which is then converted into digital form for storage and trans-
mission. Since multiple transmissions (to different outlets) of
items are likely to take place, compression is of crucial impor-
tance. Upon request, an item is delivered electronically to a news

1We assume that the transmission is error free; a more general model could
incorporate protection against packet losses.
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Fig. 1. An application of joint watermarking and compression.

outlet in the form of a source codebook index. The news outlet
decodes the index using the source codebook, thereby obtaining
the (compressed and watermarked) image or video sequence for
eventual publication. The source wishes to ensure that its water-
mark is tamperproof, i.e., it is resilient to deliberate attacks on
the published stegotext.

A key assumption of the above attack model is that the at-
tacker has no access to the source codebook used in generating
the stegotext from the covertext. If the attacker uses continuous
distributions (e.g., the additive Gaussian noise in our case), then,
with probability one, the resulting forgery will be different from
every representation vector in the source codebook. Thus, the
occurrence of an attack will be easily verifiable. A successful at-
tack is one that renders the embedded watermark undetectable,
thereby challenging the ownership of the document.

The main problem treated in this paper combines elements of
source and channel coding. Indeed, the covertext and the water-
mark are jointly compressed using a source codebook; and the
watermark, viewed as a message, must be recoverable after an
attack, which can be easily modeled as a transmission channel
(the additive Gaussian noise channel in our case). Since a single
encoder–decoder pair is used for the entire system, it is impor-
tant to differentiate between this model and the general class of
problems treated injoint source-channel coding(JSCC) [16].

In JSCC, the key objective is to design an encoder which
maps source sequences directly into channel input sequences,
and a decoder which maps channel output sequences directly
into source reconstructions that satisfy an average distortion
constraint. Joint watermarking and compression, on the other
hand, has two objectives: 1) reconstruction of thesourcese-
quence within specified distortion at theencoder output; and
2) recovery of an embeddedmessageat thedecoder output.
Also note that, at least in the private scenario, the decoder has
the covertext (source) available as side information. Informa-
tion about the source is typically not available at the decoder
in most JSCC problem formulations; recent work [17] on JSCC
with side information (about the original source) at the decoder
may have some implications on watermarking.

Previous work involving joint watermarking and compres-
sion [9], [14], focused on the case where the watermarked/com-
pressed data were not subject to attacks (compression inherently
introduces degradation, but cannot be construed as a malicious
attack of the type studied in, e.g., [6], [7]). It was shown that,

when the covertext is independent and identically distributed
(i.i.d.) Gaussian and an average quadratic distortion constraint is
satisfied, the region of allowable rates (for the no-at-
tack case) is given by

where is the quantization rate, is the watermarking rate,
is the covertext variance (per dimension or pixel), andis

the average quadratic distortion between the covertext and the
compressed stegotext. Since this result is subsumed in the anal-
ysis of this paper, no further discussion is in order here except
for the following observation. The rates above are compatible
with a naive encoding scheme whereby bits are used to
encode the watermark index and bits to represent
the covertext, where

By standard rate-distortion theory for i.i.d. Gaussian sources,
there are enough bits to represent the covertext with average
distortion equal to . Yet this scheme is entirely inadequate
from a watermarking (or information hiding) perspective, since
the reconstructed data do not contain the watermark in any form
whatsoever.

An interesting compression/watermarking scheme developed
by Chen and Wornell [12] isquantization index modulation
(QIM), where an ensemble of quantizers—each corresponding
to a particular watermark index—is used for compressing the
covertext. Theregularversion of QIM, in which the stegotext is
communicated to the user as an index in a source codebook, is of
relevance to our work and will be studied further in Section IV.
Analyses of other compression/watermarking techniques can be
found in [18], [19].

In summary, this paper contains final versions of results in [9],
[14], together with extensions to the important case where the
compressed data are subjected to additive memoryless Gaussian
attacks. The main contribution is a coding theorem which estab-
lishes the region of all achievable rate pairs such that
the average per-symbol quadratic distortion between the cover-
text and the compressed stegotext does not exceed a threshold

, and the watermark index is detectable with high probability
in a privatescenario, i.e., assuming that the covertext is avail-
able to the detector. Achievability results are also presented for
regular QIM in thepublic scenario, as well as for certain addi-
tive watermarking schemes.

The paper is organized as follows. The description and in-
terpretation of the rate region consisting of achievable

pairs is given in Section II. The coding theorem that
establishes is proved in Section III. Section IV con-
tains achievability results for other schemes that combine wa-
termarking and compression. Extensions, conclusions and di-
rections for further research are given in Section V.
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Fig. 2. The watermarking/authentication system with quantization.

II. THE RATE REGION

The watermarking/quantization system under consideration
is shown in Fig. 2. In the embedding process, is the i.i.d.

-dimensional Gaussian covertext of (per-symbol) variance;
is the watermark index (independent of ) which is uni-

formly distributed over a set of size ; and is the (quan-
tized) stegotext which can be found in a source codebook of
size . (Since delivery of the watermarked data to the cus-
tomer is noiseless, there is no need to explicitly show the source
codebook index in Fig. 2.) The attack is modeled as additive
i.i.d. Gaussian noise of (per-symbol) variance , and is
assumed independent of . The watermark decoder outputs

, its estimate of . The transparency and robustness require-
ments are expressed via the following constraints:

(1)

and

as (2)

The converse and achievability results of Section III establish
the region of achievable rates , as expressed
in (3), shown at the bottom of the page, where

(4)
and . is the shaded region in Fig. 3.
Its upper boundary is composed of the following elements.

• The segment on the straight line

• The curved segment defined by the equation

Fig. 3. The rate regionR of achievable rate pairs(R ; R ).

for in the interval

i.e., the projection of on the -axis.
• The half-line which is parallel to the -axis and

has vertex . The -ordinate on is given by
.

Two key conclusions can be drawn from Fig. 3.

• For quantization rates

the watermarking rate can be as high as
, which is the maximum wa-

termarking rate for the case of no attack ( ). In
other words, at low quantization rates, Gaussian attack
noise does not degrade the performance of the system.

• When

the maximum watermarking rate is constant and equal to
. This expression makes sense in the case

, where the distortion in the original cover-
text is solely due to watermarking, and whererepre-
sents the “signal” power in the additive white Gaussian
noise (AWGN) attack channel of variance —hence
the familiar expression for the capacity of that channel.
It is surprising that in the case , there exists a
quantization rate threshold above which quantization does

(3)
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not hinder the detection of the watermark, i.e., the water-
marking rate can be as high as in the case of no compres-
sion.

III. T HE CODING THEOREM

The coding theorem which establishes the region of all
achievable rate pairs , consists of a converse and a
direct (achievability) part. First, some definitions are in order.

Definition 1: A quantization/water-
marking code consists of the following elements.

• A watermark set .

• An encoding function which
maps a watermark index and the covertext
to a representation sequence taken from the set

.

• A decoding function which maps
the output of the channel and the covertext to an
estimate of .

Here, . For random and , we have
the random quantities and .
A definition of a public quantization/watermarking code would
be similar to the above, except that the decoderwould take as
input only .

Definition 2: The probability of error in detecting watermark
is given by

Furthermore, the average probability of error for decoderis
given by

and is equal to when the watermark index is
uniformly distributed in .

Definition 3: For a quantization/water-
marking code, the average (per-symbol) distortion is given by

assuming that is uniformly distributed in .

Definition 4: A rate pair is achievable for
distortion constraint , if there exists a sequence of quan-
tization/watermarking codes such that

tends to as and . Moreover, a
rate region of pairs is achievable if every element
of is achievable.

The coding theorem is stated as follows.

Theorem 3.1:A quantization/watermarking code
satisfies the transparency and robust-

ness requirements (1) and (2), respectively, if and only if
(where is defined in (3)).

The proof of Theorem 3.1 consists of two parts; the converse
and the direct part. The converse part states that no rates outside

are achievable; the direct part states that is in-
deed achievable. The two proofs can be found in Sections III-A
and III-C, respectively.

A. Converse Theorem

The converse theorem is stated as follows.

Theorem 3.2:For any code that satisfies
(1) and (2), the rate pair must lie in .

Proof: Let . We assume that the watermark index
is uniformly distributed in , that

, and that the distortion constraint is met with equality

(5)

By virtue of the monotonicity of the region in , the
constraint can then be relaxed to an inequality, as in (1).

Since is i.i.d. Gaussian, a standard converse rate-distor-
tion theorem (e.g., [20]) yields

(6)

This establishes the lower bound on in the definition of
.

At this point, we define the inner product between two
random vectors as

(7)

We further define the following quantities:

(8)

(9)

(10)

(11)

(12)

(13)

where the second equalities in (11)–(13) are straightforward
consequences of previous definitions.

The upper bound on will follow from four lemmas. The
first lemma provides a lower bound on in terms of

defined above.
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Lemma 3.3:Let be as defined in (13). Then for i.i.d.
Gaussian, we have

with equality iff are i.i.d. Gaussian.
Proof: We have the following inequalities:

(14)

where was defined in (9), and (14) is true because condi-
tioning reduces entropy. Next, we have

(15)

(16)

(17)

(18)

where (16) is true because the differential entropy of a contin-
uous random variable is upper-bounded by the differential en-
tropy of a Gaussian variable with the same variance [20]; (17) is
a consequence of the concavity of the function; and (18)
is due to (11). Hence, from (14), (18), and (13), we have

(19)

Note that all relationships up to (17) hold with any scalar re-
placing . The value defined in (9) satisfies the orthogonality
condition and, thus, yields the minimum
mean-squared error (MMSE) (equal to ) in estimating

by a scalar multiple of . Thus, among all choices of scalars,
as defined in (9) yields the tightest possible bound in (19).

We also have the following conditions for equality: in
(14), iff the random vector is independent of

; in (15), iff the variables are independent;
in (16), iff is Gaussian for every; and in (17),
iff takes the same value for every. It is
straightforward to show that these four conditions are jointly
equivalent to being i.i.d. Gaussian,
and, thus, the proof is complete.

The second lemma establishes the range of possible values
of .

Lemma 3.4:Under the distortion constraint (5), the range of
is the interval .

Proof: From (6) and Lemma 3.3 we have

Hence, , thus establishing the upper bound on.

For establishing the lower bound on, it suffices to consider
(5) and (13). Specifically, from (13) we can easily see that

(20)

and from (5) we have

(21)

Substituting (21) into (20) we obtain

(22)

It can be easily shown that (22) is minimized when
, and the minimum value is , as required.

The third lemma establishes a relationship between and
; note that is defined in (12) while appears

in (4).

Lemma 3.5:For any allowable value of

(23)

where and were defined in (4) and (12), respec-
tively.

Proof: From (13), we have that . Substi-
tuting into (22) we obtain

(24)

Solving for yields

(25)
The larger of these two values is equal to , thereby com-
pleting the proof.

The fourth lemma involves two chains of inequalities corre-
sponding to the two upper bounds on .

Lemma 3.6:For all such that , we
have

and

Proof: The first chain of inequalities is as follows:

(26)

(27)

(28)

(29)

(30)
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(a) (b) (c)

Fig. 4. The second-moment spaceL spanned by vectorsU and Ŷ , shown for three different values of�. The circleC is the locus of allŶ such that
n EkU � Ŷ k = D. As � increases from0, P () increases monotonically (case (a)) until it reaches its maximum valueD (case (b)), then decreases
monotonically until� = � (case (c)).

where (26) holds because and are independent of ;
(27) follows from

(28) is a consequence of Fano’s inequality; (29) holds because

(since is a function of and ) and is independent
of , and (30) follows from .

The second chain of inequalities is as follows (wherewas
defined in (10)):

(31)

(32)

(33)

(34)

(35)

(36)

where (31) holds because is independent of ; (32) fol-
lows from Fano’s inequality; (33) holds because is a func-
tion of and ; (34) follows from the independence of
and ; and (35) is easily established using a chain of in-
equalities similar to (15)–(18).

From (30) and (36), the lemma follows.

The proof of the converse result can now be completed as
follows:

(37)

(38)

(39)

where (37) is due to Lemma 3.6; (38) follows from Lemmas 3.3
and 3.5; and the maximum in (39) is taken over the range of
values of established by Lemma 3.4. By taking , the
converse is proved.

B. Explanatory Remarks

1) Geometrical Considerations:A geometrical interpreta-
tion of the arguments presented in the proof of the converse the-
orem can be obtained by considering the-space spanned by
the vectors and , with inner product defined in (7).

The geometry of this space is depicted in Fig. 4. The vector
lies on a circle centered at and having radius

corresponding to the distortion constraint (5). The lengths of
and are given by and , respectively, where
was defined in (8). The angle between the two vectors is denoted
by and is assumed to take values in , as usual.

Note that Fig. 4 is drawn for the case , which is a safe
assumption in most practical applications. The maximum value
of is then , and is obtained when is tangent
to . The maximum value of is also
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In the case , the circle encloses the origin and, thus,
the range of values of is the entire interval . Then the
maximum value of is unity. Combining the two cases
together, we have that the maximum value of is

and thus the minimum value of is

as in Lemma 3.4.
As we argued in the proof of Lemma 3.3, the valuesand
, as defined in (10) and (9), respectively, have the following

interpretation: is the projection of on , or equiv-
alently, the MMSE estimator of among all scalar multiples
on ; and similarly, is the scalar MMSE estimator of

given . and , as defined in (12) and (11), re-
spectively, are the resulting MMSE errors. As was seen in the
proof of Lemma 3.5, is the larger of two possible values
of corresponding to a particular value of(other than
or ). Fig. 4 clearly illustrates that, in the case ,
there are two possible positions of on for each value of

smaller than (correspondingly, for each greater than
). The position farthest from the origin is marked in Fig.4

(a) and (b), and the length of the error vector is
shown as .

2) The Upper Boundary of the Rate Region:In this part, we
examine the behavior of the upper bound on as a function
of

(40)

Note that since is variable, the range of interest for is
.

The second argument of in (40) is independent of
and monotone in . From the proof of the converse

theorem above, we know that is the length of the error
vector when and are as shown in Fig. 4, with

. Clearly, increases monotonically as
increases from to

then decreases monotonically asincreases to

Equivalently (but in the reverse direction), asincreases from
to and then on to infinity,

increases from to (its maximum

value), and then decreases to. The function
has similar behavior, and is plotted in Fig. 5 against .
The initial (leftmost) and maximum -ordinates on the curve

are and , re-
spectively.

The first argument of in (40) involves and de-
creases monotonically from to zero as
ranges over the interval of maximization
in (40). Plotted against , it yields a line segment of
slope (in Fig. 5), whose position on the graph depends on
the value of .

The behavior of as varies can be examined with
the aid of Fig. 5. There are three regimes of interest:

a) In the first regime, the straight-line segment lies entirely
below the curve (Fig. 5(a)). The maximin in (40) is then given
by the maximum ordinate on the line segment, i.e.,

This occurs for

b) In the second regime, the straight-line segment intersects
the rising portion of the curve (Fig. 5(b)). The maximin in (40)
is then given by the ordinate at the point of intersection (this
value is given by the root of a cubic equation). This occurs for

c) The third regime corresponds to all other values of,
namely

In this case, the straight-line segment either intersects the curve
on its falling portion only (as in Fig. 5(c)), or does not intersect it
at all. The maximin value in (40) is then given by the maximum
ordinate on the curve, i.e.,

Note that this upper bound on also follows by a simpler
argument, namely, that can be no higher than the capacity
of an AWGN channel with signal (i.e., watermark) powerand
noise power (when no quantization noise is present, i.e.,

).
The three regimes obtained above correspond to the three seg-

ments , , and of the upper boundary of de-
scribed in Section II.

Note: In the special case (no attack), the curve in
Fig. 5 is displaced to and only the first regime remains,
i.e., the bound on is simply .
The converse theorem then reduces to the channel coding part
of the converse theorem in [21], and also the converse theorem
of [14] for .
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(a) (b)

(c)

Fig. 5. Plots ofR � log() and log(1 + ) and determination of the maximin point for various values ofR .

C. Direct Theorem

The direct theorem is stated as follows.

Theorem 3.7:For any rate pair , there
exists a code such that (1) and (2) are satis-
fied.

Proof: As required for , we limit the quantization
rate to

We use a random coding argument, where the watermark index
is assumed uniformly distributed in . The

technique is similar to the private version of regular QIM [12],
in that quantizers, each one indexed by a different water-
mark, are employed.

Codebook Generation:Let

A set of i.i.d. Gaussian sequences is
generated and partitioned into subsets of sequences
each, i.e.,

(41)

The th subset, consisting of sequences
becomes the codebook for theth watermark.

Watermark Embedding:Given and a deterministic ,
the embedder identifies within theth codebook the first code-
word such that the pair lies in the
set of typical pairs with respect to a bivariate Gaussian
distribution having mean zero and covariance

The output of the embedder (encoder) is denoted by
. If none of the codewords in theth codebook is

jointly typical with , then the embedder outputs .
In this manner, watermarked versions of the covertext
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are obtained: . Clearly, for random ,
the embedder output is .

Note that the second moments in are consistent with
the geometry of Fig. 4, with . Specifically, if the
pair lies in , then the empirical second mo-
ments

and

are within (or a factor thereof) of the average values shown
implicitly in Fig. 4. This also means that the distortion constraint
(1) is essentially met (since-differences can be safely ignored).

Decoding: Again, the decoder has access to the covertext
. Upon receiving , the decoder seeks

among all watermarked versions of
a single such that the triplet lies in

, the set of typical triplets with respect to the trivariate
Gaussian distribution having zero mean and covariance
matrix shown at the bottom of the page. If a unique

such sequence exists, then the decoder outputs ;
otherwise, the decoder declares an error.

Note that , where
is the marginal of the attack noise . The quantities

of interest here are the determinants ,
, and ,

as well as the mutual information values

(42)

and

(43)

Error Events: Without loss of generality, we assume .
We then have the following error events.

• : , i.e., there exists no
such that .

• : There exists a such that
, but .

• : but there also exists a

such that .

The probability of error is then

Behavior of : From standard rate-distortion the-
orems [20], we know that if (the mutual
information of the bivariate defined above), then

as . Since from (41), and
from (42), it follows that

provided that

(44)

Behavior of : To show that , it suffices
to show that the triplet lies in with
probability approaching unity asymptotically. In the previous
paragraph, we showed that

Since and is independent of ,
it follows easily that the empirical correlations obtained from

are within (or a factor thereof) of the corre-
sponding entries of with probability approaching unity
asymptotically. Typicality with respect to thus holds
(also with probability approaching unity).

Behavior of :

where the last equality is due to the symmetry of the random
code statistics. Since

and by construction, is independent of
given , a standard argument (cf. the proof of [20, The-

orem 8.6.1]) yields

where the conditional mutual information is computed with re-
spect to the trivariate defined earlier. From (43), we have
that

and, therefore, provided

(45)
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From (44) and (45) it follows that is achievable provided

(46)
Choosing so as to maximize the
right-hand side of (46), we can achieve the whole region

.
We have thus proved that if then the

average probability of error, over the ensemble of random codes,
vanishes asymptotically with. By a standard argument, there
exists a deterministic code that achieves with arbitrarily
small probability of error (averaged over all the messages); and
the codebook can be then expurgated to make the maximal prob-
ability of error arbitrarily small.

IV. PERFORMANCE OFOTHER SCHEMES

In this section, we present achievability results for certain
schemes that combine watermarking and compression. Specif-
ically, we investigate the relationship between watermarking
and quantization rates in the presence of additive memoryless
Gaussian noise, for the following systems.

• Regular QIM [12], where no knowledge of the covertext
is available at the decoder (public scenario).

• Additive watermarking, where the embedder computes the
weighted sum of the covertext and a watermark-dependent
signal and then compresses the resulting vector using a
universal (watermark nonspecific) quantizer. A private de-
tection scenario is assumed in this case.

Although our focus is on achievability results, the rate region
derived in Section III can be taken as an outer bound

on the achievable rate region of both schemes considered in this
section.

A. Regular QIM, Public Scenario

We consider theregular version of QIM [12] (distinct from
distortion-compensatedQIM), since we require the output of the
embedding process to be a quantized stegotext (corresponding
to an index in a source codebook).

Essentially, here we have an ensemble of quantizers
and their codebooks. Each quantizer corresponds to a different
watermark index, and covers the entire covertext space with

representation vectors (codewords). The water-
mark is embedded into a covertext by quantizing
using the th quantizer, yielding a representation vector.
Detection of the watermark in forgery entails mapping

to a representation vector taken from theunion of the
codebooks; the index of the codebook which contains

that vector becomes the estimateof the watermark . (By
contrast, the private detection scenario used in the proof of

the direct theorem of Section III mapped to one of
representation vectors, each taken from adifferentcodebook.)

As discussed in [12], achievable rates for regular QIM (also
called “hidden” QIM) under constraints (1) and (2) can be found
using a single-letter formula developed by Gel’fand and Pinsker
[22]

Here, is an achievable channel code rate for a memoryless
channel with input variable (not shown in the above formula),
output variable , and i.i.d. channel side information avail-
able to the transmitter (only). is an auxiliary i.i.d. random vari-
able which can be chosen (together with) so as to maximize

subject to the Markov constraint . The proof
of the direct (achievability of ) result in [22] employs approxi-
mately auxiliary sequences generated randomly in
an i.i.d. fashion. In the context of QIM, the memoryless channel
is none other than the attack channel; the auxiliary sequences
are the source codewords themselves; and the side information

is the covertext. This leads to the following relationships:

(47)

(48)

The trivariate distribution can be taken as the
Gaussian in the proof of the direct theorem in Section III. Thus,

, where and

are independent with mean zero and variancesand
, respectively; and also has mean zero and satisfies

. It should be noted again that the second moments of
are consistent with the geometry of Fig. 4.

We briefly investigate the behavior of (48) as (given by
(47)) varies. Letting , we have from
(47)

and thus,

(49)

Also, (48) gives

(50)

Setting in (25) and expressing in
terms of , , and , we obtain (with the aid of (49)) (51),
shown at the bottom of the page. The achievable region implied

(51)
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Fig. 6. Inner bounds on the achievable rate regions for public QIM and private
additive schemes.R is an outer bound on the achievable rate regions of
both schemes.

by (51) is shown in Fig. 6. The range of values of for which
in (51) is nonzero is a subinterval of

whose exact endpoints are given by the roots of a cubic. Expres-
sion (51) is shown in Fig. 6 as the dashed-dotted curved line.
One can trivially achieve the rest of the region (below the hori-
zontal, dashed-dotted line), by appending extra “dummy” bits to
the output of the quantizer (thus, increasing the rate). As can
be seen from Fig. 6, the watermarking rate obtained using
i.i.d. Gaussian codebooks is positive only for a finite range of
values of (without appending the trivial bits). Whether there
exists an encoding scheme such that the maximum achievable
watermarking rate is equal to (for a finite value
of ) is still an open question.

B. Additive Watermarking, Private Scenario

Additive watermarking schemes (see, e.g., [9], [14]) use a
single quantizer which is not dependent on the embedded water-
mark. From a complexity/cost viewpoint, they are particularly
attractive in applications where the same covertext is distributed
to different customers (i.e., the embedded watermark is a finger-
print identifying the customer), as customers can use the same
codebook in order to reconstruct the data.

In general, additive watermarking reduces to the computation
of

(52)

where is the index of the watermark and is an -dimen-
sional signal that does not depend on the covertext. are
nonzero scalars. To further compress, a universal quantizer
(i.e., one that does not depend on the watermark embedded in

) can be used

subject to an appropriate distortion constraint ((1) in this case).
The decoder attempts to detect given and with van-
ishing probability of error.

We obtain an inner bound on the achievable re-
gion using a random coding argument. First, we note that since

the distortion constraint is between and (not between
and the argument of the quantizer), compressing is equiv-
alent to compressing , i.e., .
This effectively eliminates the parameterin (52). Also, the pa-
rameter can be absorbed in the power of the watermark. Thus,
we can use the simpler form2

The watermarker generates a random channel codebook
, all components of which are i.i.d.

Gaussian with variance ; and a random source codebook
, also i.i.d. Gaussian with variance

, where both and are free parameters in the model.
is encoded as , where is the smallest index

such that the pair is jointly typical with respect to
a bivariate Gaussian having mean zero and covariance

Without going into detail, it is not difficult to show that joint typ-
icality of and implies that the per-letter distor-
tion between and is, with probability approaching unity,
no larger than , which, in turn, implies that the distortion
constraint (1) is essentially satisfied. By the usual rate-distortion
argument, taking

(53)

ensures that, with probability approaching unity, a jointly typ-
ical pair can be found. (As expected from rate-
distortion theory, with equality iff

and .)
Upon receiving , the watermark detector at-

tempts to find a unique such that the triplet
is jointly typical with respect to a trivariate Gaussian
having mean zero and covariance

(This distribution is consistent with and the additive noise
distribution in the sense that

.) Again, without going into detail,
it can be shown that if

(54)

then the probability of decoding error vanishes as .
Solving (53) for , then substituting into (54) and letting

, we obtain the achievable watermarking rate of expres-
sion (55), which is nonnegative for .
Equation (55) is maximized when is equal to (56), yielding

2In the case of no compression, scaling of the covertext plays an important
role in determining capacity; see [6], [7]. Here, however, compression may in-
clude whatever scaling ofY is required in order to satisfy the distortion con-
straint; and the power of the watermarkX is optimized to maximize the wa-
termarking rate. Hence, additional scaling ofU by� does not provide an ad-
ditional degree of freedom.
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final expression (57) (see (55)–(57) at the bottom of the page).
The corresponding curve is also shown in Fig. 6 (the region
below it being an inner bound on the achievable region for this
additive scheme). As expected, when , is negli-
gibly different from and, thus, approaches
the capacity of an AWGN channel.

V. CONCLUDING REMARKS

In this paper, we considered a system that watermarks
-dimensional i.i.d. Gaussian covertexts and distributes them

in compressed form, such that an average distortion constraint
is met. We assumed that the compressed stegotexts are further
corrupted by Gaussian attacks. By means of a coding theorem,
we established the region of achievable quantization
and watermarking rates such that the error probability in
decoding (in a private scenario) the embedded message from a
forgery approaches zero asymptotically in. Moreover, we pre-
sented achievability results for the public version of the regular
QIM scheme, as well as for additive watermarking/quantization
schemes.

The expression of reveals two surprising facts: 1)
at low quantization rates, Gaussian attacks do not degrade
the system performance; and 2) there exists a quantization
rate threshold above which quantization does not hinder the
watermark detection, i.e., the watermarking rate can be as high
as in the case of no compression. Intuitively, these facts can be
explained as follows: 1) At low , the quantization cells are
large enough, thus, inducing large detection regions; Gaussian
noise does not, therefore, cause a significant amount of error
(in terms of the error exponent). In other words, a detection
error is caused mainly due to the degradation introduced by the
compression. 2) There exists a finite such that the repre-
sentation sequences and the corresponding decoding regions
(given the covertext ) have the geometrical properties of
an optimal code, which achieves the capacity of an AWGN
channel.

A. Extensions to Above Model

There are many possible extensions to the problem of joint
watermarking and compression treated in this paper. In [23], the
following problems are investigated and the corresponding rate
regions are characterized.

1) Game Played Between Watermarker and Attacker:The
attacker, who (presumably) knows the statistics of the water-

marking strategy, is free to choose any memoryless attack that
satisfies the average distortion constraint

while the watermark decoder (but not the encoder) knows the
statistics of the attack. As is proved in [23], the rate region be-
comes

where

It is further proved that the optimal memoryless attack (from the
attacker’s point of view) corresponds to optimum compression
of a Gaussian source with distortion . Similar observations
were made in [6], [7] for the case of no compression.

2) General Gaussian Distributions:Here, it is assumed
that: 1) the attack noise is additive and Gaussian but not
necessarily stationary (or ergodic), and 2) the covertextis
Gaussian but not stationary, either. Although the achievable
rate region may not have a limit as , the probability of
error can be made to approach zero for very large. The proof
of the coding theorem relies on the fact that general Gaussian
processes satisfy a version of the asymptotic equipartition prop-
erty; more details on this property can be found in [23]–[26].

B. Future Work

For future research directions, we briefly mention a number
of problems. One interesting problem is the determination of
the rate region in a public scenario. Such a region should be a
subset of , but whether it is a proper subset is still an
open question.

Another interesting problem would be to consider more gen-
eral attacks, possibly with different distortion constraints (e.g.,
of the almost-sure type [6] or the large-deviations type [10]).

(55)

(56)

(57)
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Also, as we pointed out in Section I, our attack model assumes
that the attacker does not have access to the source codebook,
and, thus, the occurrence of an attack is almost certainly de-
tectable. It would be interesting to consider other models where
the attacker has access to either the entire source codebook or a
subset of it.
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