Learning a Self-Expressive Network for Subspace Clustering

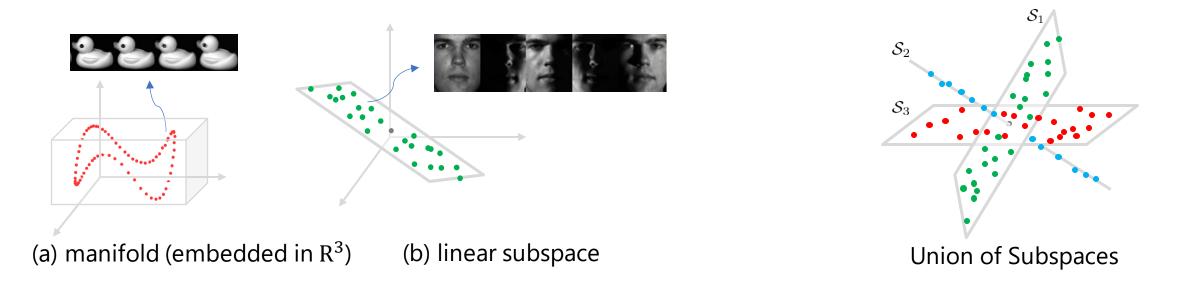
Shangzhi Zhang¹, Chong You², Rene Vidal³, Chun-Guang Li¹

¹ School of Artificial Intelligence, Beijing University of Posts and Telecommunications
 ² Department of EECS, University of California, Berkeley, CA
 ³ Mathematical Institute for Data Science, Johns Hopkins University, Baltimore, MD

- Introduction to Subspace Clustering
- Related Work and Motivations
- > Our Proposal: SENet
- > Experiments

C Latent Structures in High-Dimensional Data

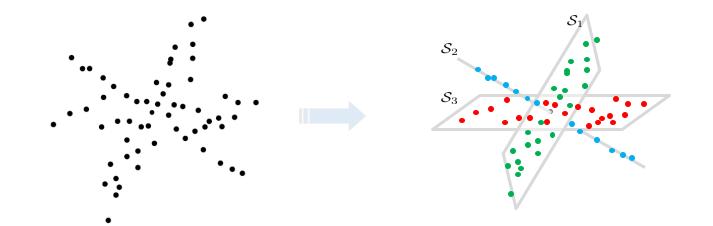
• High dimensional data with a specific semantic pattern (class or category) usually lies in submanifold or a linear subspace



 Complex high dimension data with multiple classes can be modeled by a union of low dimension subspaces

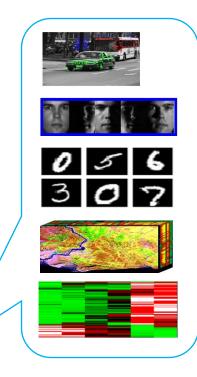
O Problem Statement: Subspace Clustering

 Given a set of data points lying (approximately) in a union of subspaces, our goal is to segment data points into each subspace



• Applications:

> e.g. face clustering, cancer subtype discovery, etc.

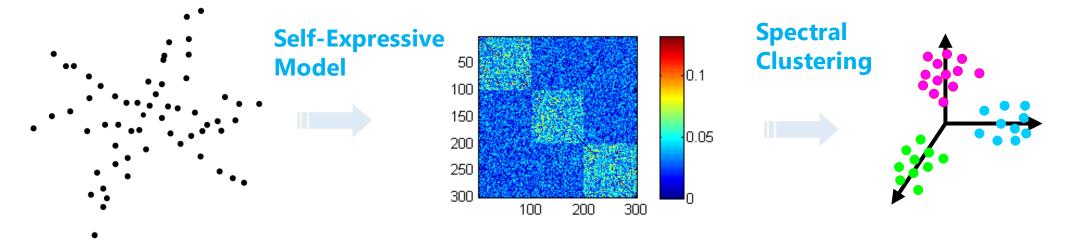


- Introduction to Subspace Clustering
- Related Work and Motivations
- > Our Proposal: SENet
- **>** Experiments

O Self-Expressive Model based Methods

- Step 1: Perform Self-Expressive Model to get self-expressive coefficients
- Step 2: Apply Spectral Clustering to the

induced affinity matrix



[1] R. Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(3):52–68, March 2011.

[2] C.-G. Li, C. You, & R. Vidal, "Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework", IEEE Transactions on Image Processing, 2017.

O Subspace Preserving Property

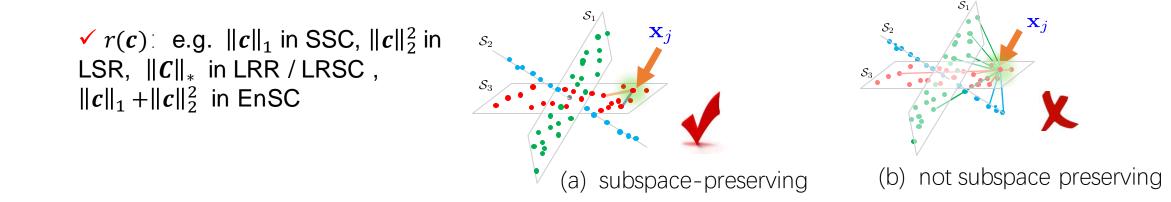
Self-Expressive Model

 \succ Represent a data point x_i as a linear combination of other points

$$x_{j} = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{j-1}x_{j-1} + 0 \cdot x_{j} + c_{j+1}x_{j+1} + \dots + c_{N}x_{N}$$

 $intriangle min_{c_{ij}} \sum_{i \neq j} r(c_{ij})$ s.t. $x_{j} = \sum_{i \neq j} c_{ij}x_{i}$

> Subspace Preserving Property: nonzero coefficients correspond only to data points in the same subspace as x_j



[1] E. Elhamifar & R. Vidal: "Sparse subspace clustering", CVPR 2009. [2] E. Elhamifar & R. Vidal: "Sparse subspace clustering: Algorithm, theory, and applications", IEEE TPAMI 2013.

Contemporal Scalability Issue in Self-Expressive Model

Self-Expressive Model

> For data point x_j , we solve for the self-expressive coefficients from the optimization problem as follows:

$$\min_{c_{ij}} \frac{\gamma}{2} \| \boldsymbol{x}_j - \sum_{i \neq j} c_{ij} \boldsymbol{x}_i \|_2^2 + \sum_{i \neq j} r(c_{ij})$$

Cannot handle large-scale dataset due to solving problem of $O(N^2)$ variables!

Scalable Subspace Clustering

- Dictionary based methods (e.g., SSSC, OLRSC, ESC, RPCM):
 - Scarify performance when dictionary is small but suffer from a quadratic complexity with dictionary size
- Decomposition based methods: greedy method (e.g., SSCOMP), active support (e.g., EnSC), dropout (e.g., S³COMP)

 $O(N^2)$

 $N \times N$

Still have O(N²) time and memory requirement

- Introduction to Subspace Clustering
- Related Work and Motivations
- > Our Proposal: SENet
- **>** Experiments

C Reparametrize Self-Expressive Coefficients

Reparametrize Self-Expressive Model

> For data point x_i in a linear subspace, we have:

$$\boldsymbol{x_j} = \sum_{i \neq j} c_{ij} \boldsymbol{x_i}$$
 $\boldsymbol{x_j} = \sum_{i \neq j} f(\boldsymbol{x_i}, \boldsymbol{x_j}; \Theta) \boldsymbol{x_i}$

> (Subspace-Preserving Property): desire that $f(x_i, x_j; \Theta)$ yields nonzero outputs only correspond to data points in the same subspace as x_j

 \mathbf{X}_{i}

 \mathcal{S}_2

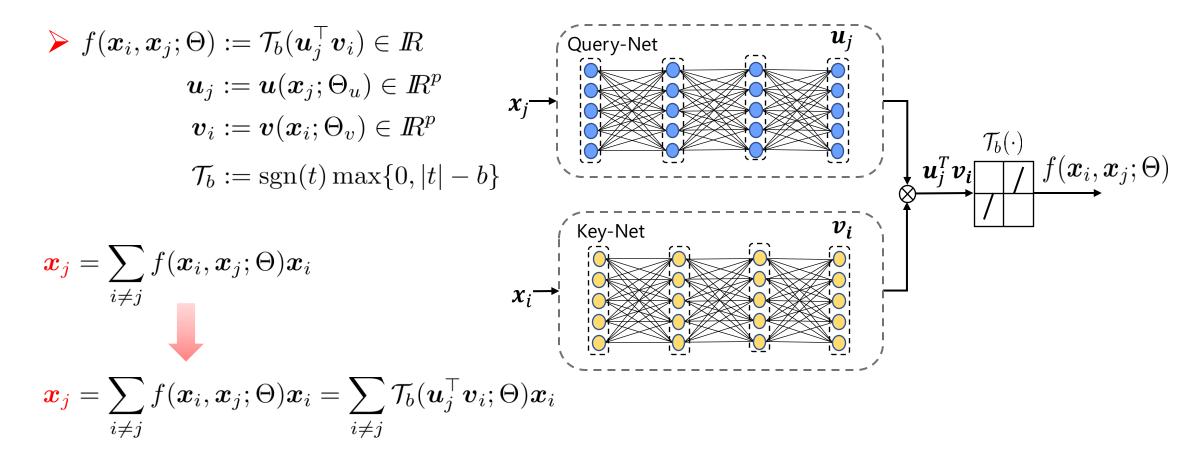
 \mathcal{S}_3

$$\min_{\boldsymbol{c}_{ij}} \frac{\gamma}{2} \|\boldsymbol{x}_j - \sum_{i \neq j} c_{ij} \boldsymbol{x}_i\|_2^2 + \sum_{i \neq j} r(\boldsymbol{c}_{ij}), \quad \text{where} \quad r(\boldsymbol{c}_{ij}) = \lambda |c_{ij}| + \frac{1 - \lambda}{2} c_{ij}^2,$$
EnSC (You et al. CVPR16)

Reparameterization

$$\min_{\Theta} \frac{\gamma}{2} \| \boldsymbol{x}_{j} - \sum_{i \neq j} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta) \boldsymbol{x}_{i} \|_{2}^{2} + \sum_{i \neq j} r(f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta)),$$

• We use a query-key network with learnable soft thresholding activation function to implement $f(x_i, x_j; \Theta)$



C SGD based Training Algorithms

• Naïve SGD and Two-pass SGD:

> Naïve SGD: For data point x_i and data matrix X, we have:

$$\begin{split} \ell(\boldsymbol{x}_{j}, X; \Theta) &:= \frac{\gamma}{2} \|\boldsymbol{x}_{j} - \sum_{i \neq j} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta) \boldsymbol{x}_{i}\|_{2}^{2} + \sum_{i \neq j} r(f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta)), \\ \text{where } r(\cdot) &= \lambda |\cdot| + \frac{1 - \lambda}{2} (\cdot)^{2} \text{ and compute gradients as follows:} \\ \frac{\partial \ell(\boldsymbol{x}_{j}, X; \Theta)}{\partial \Theta} &:= \sum_{i \neq j} \left(r'(f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta)) - \boldsymbol{x}_{i}^{\top} \boldsymbol{q}_{j} \right) \frac{\partial f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta)}{\partial \Theta}, \\ \text{where } \boldsymbol{q}_{j} &:= \gamma \left(\boldsymbol{x}_{j} - \sum_{i \neq j} f(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}; \Theta) \boldsymbol{x}_{i} \right). \end{split}$$

Two-pass SGD: gradient is a weighted sum and accumulated in an online fashion (constant space requirement)

Connections to Attention Models

Three Self-Attention Models

Scaled Dot-Product Attention

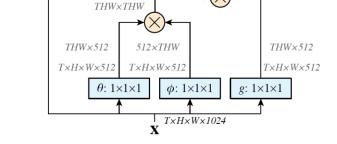
Attention $(Q, K, V) := \operatorname{softmax}\left(\frac{QK^{+}}{\sqrt{d_{k}}}\right)$

Non-Local Neural Networks:

$$\boldsymbol{y_j} := rac{1}{C(\boldsymbol{x_j})} \sum_j f(\boldsymbol{x_i}, \boldsymbol{x_j}; \Theta) g(\boldsymbol{x_i})$$

GAT (Graph Attention Networks):

 $\boldsymbol{\alpha_{ij}} := \frac{\exp(\text{LeakyReLU}(\boldsymbol{a}^{\top}[W\boldsymbol{h}_i \| W\boldsymbol{h}_j]))}{\sum_{k \in \mathcal{N}_i} \exp(\text{LeakyReLU}(\boldsymbol{a}^{\top}[W\boldsymbol{h}_i \| W\boldsymbol{h}_k]))}$



softmax

 $\mathbf{Z} \underbrace{\mathbf{T} \times H \times W \times 1024}_{T \times H \times W \times 1024}$

 $1 \times 1 \times 1$

 $T \times H \times W \times 512$

 $THW \times 512$

Non-Local NNs (Wang et al. CVPR'18)

Wh

GAT (Velickovic et al. ICLR'18)

Dot-Product Att. (Vasvani et al. NerIPS'17)

SoftMax

Mask (opt.)

Scale

MatMul

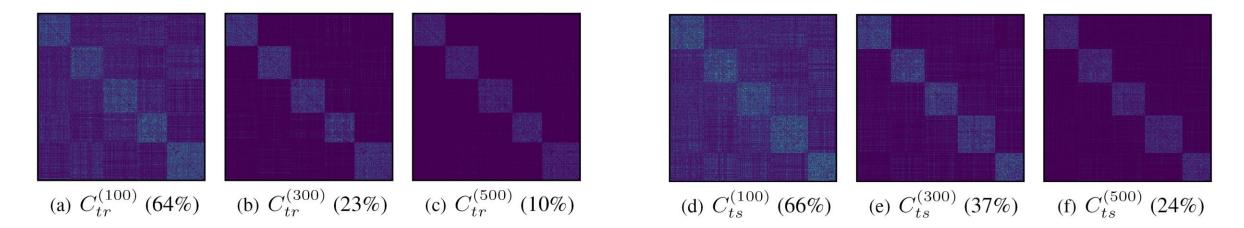
Ň

MatMul

- Introduction to Subspace Clustering
- Related Work and Motivations
- > Our Proposal: SENet
- **Experiments**

C Experiments on Synthetic Data

• **Synthetic Data**: Generate 5 subspaces of dimension 6 in R^{15} , and sample 500 points as training data and 500 points as test data



- > Left: show the evaluated self-expressive coefficient matrix $|C_{\text{train}}^{(t)}|$ of SENet at the *t*-th iteration > Right: show the inferred self-expressive coefficients matrix $|C_{\text{test}}^{(t)}|$ on test data
 - SRE (%): Subspace Recovery Error

C Experiments on Synthetic Data

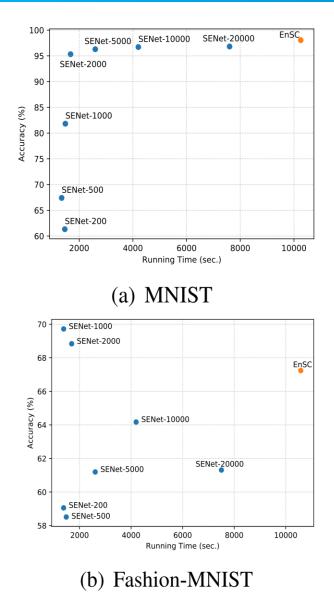
• **Synthetic Data**: Generate 5 subspaces of dimension 6 in R^9 , and sample N_i points per subspace as training data

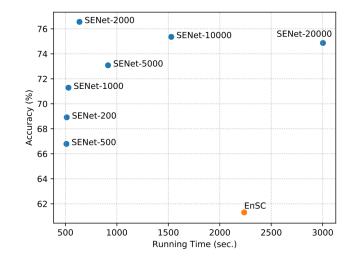
N.	Methods	Metrics								
N_i	Wiethous	\mathcal{L}	\mathcal{L}_{rec}	\mathcal{L}_{reg}	ACC (%)	SRE (%)	CONN			
	EnSC	135.127	0.107	132.442	72.0	49.611	0.178			
20	SENet	135.132	0.109	132.416	71.0	49.720	0.178			
	SENet test	1830.107	72.007	29.937	65.0	58.384	0.318			
	EnSC	559.943	0.526	558.009	93.0	27.370	0.163			
100	SENet	559.972	0.531	558.022	92.8	27.501	0.165			
	SENet test	2935.424	89.325	702.309	79.0	56.897	0.387			
200	EnSC	1053.086	0.526	1040.097	96.6	20.067	0.155			
200	SENet	1053.369	0.531	1040.097	96.0	20.195	0.159			
	SENet test	17826.273	599.099	2848.779	84.1	56.256	0.398			
1000	EnSC	4884.876	2.095	4832.508	99.4	6.493	0.126			
1000	SENet	4932.907	2.205	4877.781	99.5	9.132	0.155			
	SENet test	30037.012	887.323	7853.945	92.3	36.054	0.236			
2000	EnSC	9576.154	3.958	9477.197	99.7	4.580	0.108			
2000	SENet	10025.874	4.592	9911.074	99.4	13.555	0.201			
	SENet test	44458.734	1453.790	8113.975	97.4	21.863	0.220			

SENet is able to well approach the global solution of EnSC

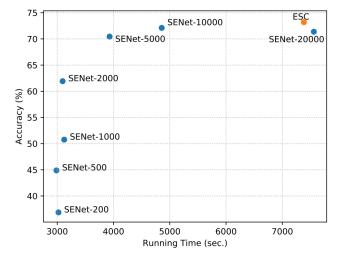
Table 1. Comparing SENet to EnSC on synthetic data

C Experiments on Real World Data: Time Costs





(c) CIFAR-10



(d) EMNIST

Comparison to state of the art

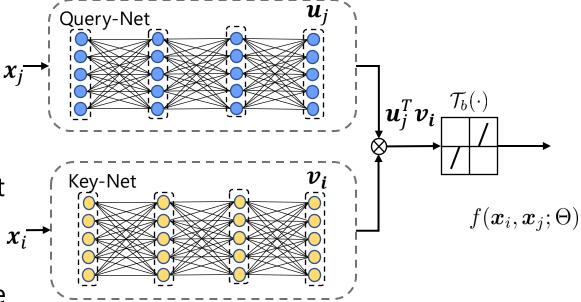
Methods	MNIST-full		Fashion-MNIST-full			CIFAR-10			EMNIST			
wiethous	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
<i>k</i> -means [42]	0.541	0.507	0.367	0.505	0.578	0.403	0.525	0.589	0.276	0.459	0.438	0.316
Spectral [55]	0.728	0.856	0.667	0.625	0.700	0.494	0.455	0.574	0.256	0.662	0.769	0.654
JULE [73]	0.964	0.913	0.927	0.563	0.608	-	0.272	0.192	0.138	-	-	-
DEC [72]	0.863	0.834	-	0.518	0.546	-	0.301	0.257	0.161	-	-	-
DAC [8]	<u>0.978</u>	0.935	0.949	-	-	-	0.522	0.396	0.306	-	-	-
DEPICT [19]	0.965	0.917	-	0.392	0.392	-	-	-	-	-	-	-
ClusterGAN [46]	0.905	0.890	-	0.662	0.645	-	-	-	-	-	-	-
DSCDAN [75]	<u>0.978</u>	0.941	-	0.662	0.645	-	-	-	-	-	-	-
DCCM [70]	-	-		-			0.623	0.496	0.408		-	-
SSC-OMP [81]	0.928	0.842	0.849	0.274	0.421	0.196	0.326	0.498	0.196	0.654	0.661	0.634
NCSC [89]	0.941	0.861	0.875	0.721	0.686	0.592	-	-	-	-	-	-
EnSC [79]	0.980	0.945	0.957	0.672	<u>0.705</u>	0.565	0.613	0.601	0.430	Т	Т	Т
ESC [77]	0.971	0.925	0.936	0.668	0.708	0.55 <mark>6</mark>	0.653	<u>0.629</u>	<u>0.438</u>	0.732	0.825	0.759
SENet	0.968	0.918	0.931	<u>0.697</u>	0.663	0.556	0.765	0.655	0.573	<u>0.721</u>	<u>0.798</u>	0.766

- Introduction to Subspace Clustering
- Related Work and Motivations
- > Our Proposal: SENet
- Experiments

O Summary: Take Home Messages

• We proposed to learn a Self-Expressive Network for subspace clustering

- Proposed a query-key network with a learnable soft thresholding activation to reparametrize self-expressive coefficients
- Proposed SGD based algorithms to train SENet with reconstruction loss and elastic net regularization
- Conducted extensive experiments to validate the generalization ability to out-of-sample data and the potential ability to handle subspace clustering on large-scale data



O Acknowledgement

• S. Zhang and C.-G. Li are supported by NSFC under grant 61876022.

Thank you for your attention!

Shangzhi Zhang



Chong You

Chun-Guang Li