Robust Recovery via Implicit Bias of Discrepant Learning Rates for Double Over-parameterization

Chong You⁺, Zhihui Zhu⁺, Qing Qu[#], Yi Ma⁺

⁺Department of EECS, University of California, Berkeley [‡]Department of Electrical and Computer Engineering, University of Denver [#]Center for Data Science, New York University

Over-parameterization and Overfitting

• A classification network can overfit to label corruption

Deep Image Prior (DIP) for Image Recovery

Ulyanov, Vedaldi, Lempitsky, Deep Image Prior, CVPR 2018

Over-Parameterization

In principle, $f(\theta)$ can generate any image! (i.e., not only clean, but also corrupted images)

Over-Parameterization -> Overfitting!

Over-Parameterization -> Overfitting!

35

Early termination solution (impractical!)

Global solution: $f(\theta) \approx y$ (overfitting!)

This Work: Over-Parameterization Without Overfitting!

Robust recovery of low-rank matrices

Robust Recovery of Low-Rank Matrices

• Goal: Recover a rank-r matrix $\mathbf{X}_{\star} \in \mathbb{R}^{n \times n}$ from (possibly corrupted) linear measurements $\mathbf{y} = \mathcal{A}(\mathbf{X}_{\star}) + \mathbf{s}_{\star}$

Matrix Factorization – Exact Parameterization

(Classical) Exact-Parameterization $\mathbf{s}_{\star} = 0 \quad \min_{\mathbf{U} \in \mathbb{R}^{n \times r}} \| \mathbf{y} - \mathcal{A}(\mathbf{U}\mathbf{U}^{\top}) \|_{2}^{2}$ (noiseless) - Gradient descent finds \mathbf{X}_{\star} (Classical) robust loss sparse \mathbf{s}_{\star} $\min_{\mathbf{U} \in \mathbb{R}^{n \times r}} \| \mathbf{y} - \mathcal{A}(\mathbf{U}\mathbf{U}^{\top}) \|_{1}$ - Sub-grad method finds \mathbf{X}_{\star} Require knowing $r = \operatorname{rank}(\mathbf{X}_{\star})!$

- Li, Zhu, So, Vidal, Nonconvex Robust Low-rank Matrix Recovery, SIAM Journal on Optimization 2019

- Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, Implicit Regularization in Matrix Factorization, NeurIPS 2017

Matrix Factorization – Over Parameterization

- Li, Zhu, So, Vidal, Nonconvex Robust Low-rank Matrix Recovery, SIAM Journal on Optimization 2019

- Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, Implicit Regularization in Matrix Factorization, NeurIPS 2017

Matrix Factorization – Over Parameterization

- Li, Zhu, So, Vidal, Nonconvex Robust Low-rank Matrix Recovery, SIAM Journal on Optimization 2019

- Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, Implicit Regularization in Matrix Factorization, NeurIPS 2017

Failure of Classical Approach for Over-Param. Models

Key Challenge: How to robustify over-parameterized models?

A Double Over-Parameterization Method

• (Seemingly) Problematic: Even more parameters, infinitely many global solutions

Implicit Algorithmic Bias

• A gradient descent with discrepant learning rates algorithm:

$$\begin{aligned} \boldsymbol{U}_{k+1} &= \boldsymbol{U}_k - \tau \cdot \nabla \ell(\boldsymbol{U}_k, \boldsymbol{g}_k, \boldsymbol{h}_k) \\ \begin{bmatrix} \boldsymbol{g}_{k+1} \\ \boldsymbol{h}_{k+1} \end{bmatrix} &= \begin{bmatrix} \boldsymbol{g}_k \\ \boldsymbol{h}_k \end{bmatrix} - \boldsymbol{\alpha} \cdot \tau \cdot \begin{bmatrix} \nabla_{\boldsymbol{g}} \ell(\boldsymbol{U}_k, \boldsymbol{g}_k, \boldsymbol{h}_k) \\ \nabla_{\boldsymbol{h}} \ell(\boldsymbol{U}_k, \boldsymbol{g}_k, \boldsymbol{h}_k) \end{bmatrix} \end{aligned}$$

• Implicit bias of learning rate ratio α

Implicit Algorithmic Bias: Main Theory

• Q1: How does α (learning rate ratio) control the solution?

Theorem: [You*, Zhu*, Qu, Ma'2020]

- $\boldsymbol{U}_0, \boldsymbol{g}_0, \boldsymbol{h}_0$ are infinitesimally small, τ is infinitesimally small
- \mathcal{A} is symmetric and commutable (i.e., $A_i A_j = A_j A_i$ for each $i \neq j$)
- $X_{\infty} = \lim_{k \to \infty} U_k U_k^{\top}$ and $s_{\infty} = \lim_{k \to \infty} (g_k \odot g_k h_k \odot h_k)$ exist and produce a global solution (i.e., $y = \mathcal{A}(X_{\infty}) + s_{\infty})$,

then (X_{∞}, s_{∞}) is a solution to the following problem $\min_{X, s} \|X\|_* + \frac{1}{\alpha} \|s\|_1 \quad \text{s.t.} \quad y = \mathcal{A}(X) + s$

Q2: What value of α should I use?
Theorem [Candes et al. '09] Using α = √n, the solution to the convex optimization above is (X_{*}, s_{*}) under certain conditions
No parameter tuning is required

Extension to Image Recovery

- Goal: Recover an image X_⋆ ∈ ℝ^{H×W×3} from y = X_⋆ + s_⋆, where s_⋆ is salt-and-pepper (sparse) noise
- Method:

 $\min_{\boldsymbol{\theta},\boldsymbol{g},\boldsymbol{h}} \| \mathbf{y} - (f(\boldsymbol{\theta}) + g \odot g - h \odot h) \|_{2}^{2}$

- Solve this problem using gradient descent with learning rate ratio lpha
- No parameter tuning is required:
 - No theory for optimal α , but $\alpha = 500$ works well for all cases (i.e., with different images/corruption levels/network widths)

Results for Varying Images

No early stop, no parameter tuning!

Take-Home: Over-parameterization without Overfitting!

- Classical robust loss function approaches will overfit for over-parameterized models
- This work proposes a *double over-parameterization model* which does not overfit by exploiting *implicit bias of discrepant learning rates*

Thank you for your attention!

Acknowledgement:

