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Benefit of Depth

e \We make progress by gaining the ability to train very deep
neural networks
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- Deep Residual Learningfor Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition2016



How to Train a Deep Network?
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Contribution: Isometric Learning

Isometric Learning
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e With isometry, deep networks can be trained without BN and shortcut



Outline

e (Conceptually) What enables training very deep neural networks?

Isometric Network (ISONet): Training 101-layer vanilla ConvNets
(i.e., conv & nonlinear layers only) with > 70% accuracy on ImageNet

e (Practically) How to design better neural network architectures?

Residual ISONet (R-ISONet): 1) SOTA performance on ImageNet
without BatchNorm, 2) Better transfer ability for object detection



Isometry

Definition. A map A : R® — RM s called an isometry if
(Az, Az') = (z, '), V{z,x'} C RC.

In words, isometry preserves distances and angles between a preimage

and its image

/
—

Translation Rotation Reflection



Isometry in Multi-Layer Neural Networks

e Consider a network with interleaved linear A .
and nonlinear o() layers Linear (A)
— Forward propagation: ‘
xl =o(A - o(Alx?)) Nonlinear (o)
— Backward propagation: ‘

88Lmogs _ (Al)*Dl L (AL)*DL(y - .’I)L),
where A* is the adjoint of A, and D is derivative of o ()
e |sometric Learning: Enforce isometry in forward/backward propagation

— For linear layer: both A and A* are (close to) an isometry

— For nonlinear layer: both o() and D are (close to) an isometry



Isometric Network (ISONet)
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Isometric Network (ISONet)
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Isometry in Convolution

e Notations: Convolution for multi-channel images

~Let x = (x1,...,xc) € REXHIXW he the input signal
((111 a2 a3z ... CL1C\
az1 a2 azsz ... Q¢
— Let A = , , , _ , € RM*CXEXE he the kernel
\0M1 apr2 apsz - - aMC}
- 2D correlation
— Define Az = > (alc*wc, .. .,aMC*a:C) e RMxHXW

c=1



A Common Misnomer

e A plethora of work on “orthogonal” neural network

— For CNNs: [Harandi & Fernando '16; Jia et al. '17; Cisse et al. '17;
Bansal et al. '18; Zhang et al. '19a; Li et al. '19a; Huang et al. '20]

— For RNNs: [Arjovsky et al. '16; Lezcano-Casado & Martinez-Rubio, '19]
— For GANs: [Brock et al. '19; Liu et al. '20]

4D conv kernel 2D matrix
(all as ... alc\ [ vec(aq1)',vec(an)',...,vec(aic)’
as; Qo ... Qo0 » vec(asr) ', vec(as)', ... vec(asc) '
\aMl aye .. aMc) \vec(anr) ', vec(ans)', ... vec(anc) '
c RMxCXkXxEk c RMX(Cxkxk)

Isometry for 4D conv kernel Z Isometry for 2D matrix!



aiq ais a3 ... a|c

Main Result e a @z Q3 ... QC

ayr Qap2 apsz ... ApyC

Theorem: Orthogonal Convolution

Given a convolution kernel A € RM*CxEXE the operator A is an isom-
etry if and only if

M L
§ ife=/¢,

Ame * Qe = .
— 0 otherwise,

and the operator A* is an isometry if and only if
C :
Z o0 ifm=m,
Ame * Am'c = .
— 0 otherwise.

In above, § is the Kronecker delta function defined on Z x Z that takes
value 1 at coordinate (0,0) and 0 otherwise.

- .

In addition, Isometry for 4D conv kernel = Isometry for 2D matrix!

(Concurrent work: Wang et al., Orthogonal Convolutional Neural Networks)



aiq ais a3

Enforcing Orthogonality Al | o om om

ayrr ape aps
e Orthogonality at Initialization: Delta Initialization
a; =90, Vi=1,--- min(C, M)
a;; =0, Vi #j
— With Delta init, A and A* are identity maps (when C' = M)
— Commonly adopted in RNNs

e Orthogonality during Training: Orthogonal Regularization

M M
A) = y: | y: Qe * A’ _6”%’ + y: | y: amC*amc"”%

ctc! m= 1

R*( T HTG'mC*GJmC 6HF+ Z Hza?’nC*GmCHF

m=m' c¢= m#=m/

a|c
asc

ayc



Fast Implementation

e Consider the computation of

R*( Z Hzav’nC*amc 6HF+ Y HTGmC*GmCHF

m=m' c=1 m#=m/

— Naive implementation

for m in range(M):
for m_p in range(M):
for ¢ in range(C):
# Compute correlation

— Implementation by deep learning packages
sum((conv2d (A, A) — identity) *%x2.0) / 2.0

¥ TensorFlow tf.nn.conv2d
» O PyTorch torch.nn.Conv2d




Isometric Network (ISONet)
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Enforcing Orthogonality in Nonlinear Layers

Nonlinearity Output

Not isometric
/. N, ,

Strongly nonlinear

P X
Input
/\ / /\ Shifted RelLU
" Closely isometric;
\/ \/ = = / <Véeakly nonlinear
relu(x — b) + b # initialization: b = —1.0
)
/\ R Purely isometric;

= \/ \/ No nonlinearity

Unfortunately, isometry is at odds with nonlinearity (by I\/Iazur—UIam theorem)



ISONet: Training Deep Vanilla Net on ImageNet?

|
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Depth 18 | Depth 34 | Depth 50 | Depth 101
Vanilla 65.67 63.09 N/A N/A
Vanilla+Shortcut 65.66 N/A N/A N/A
Vanilla+BN 68.98 69.43 70.00 N/A
ISONet 67.94 70.45 70.73 70.38

Training deep vanilla network on

ImageNet, for the first time!



ISONet: Necessity of Isometric Components

|
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All three isometric components are needed!

Delta  Ortho. Top-1
Method | SReLU =% T Acc.p(%)

(a)
(b) | Vanilla 63.09
(c) v v 46.83
(d) v 67.35
(e) v v 68.50
(f) v v 68.55
(¢) | ISONet | v v v 70.45




Outline

e (Practically) How to design better neural network architectures?

Residual ISONet (R-ISONet): 1) SOTA performance on ImageNet
without BatchNorm, 2) Better transfer ability for object detection



ResNet as Isometric Learning?

e ResNet is (almost) an isometry if residual is small

weight layer
]-"(X) i relu «
weight layer identity

e Towards a more powerful isometric network: Combine residual
learning with Orthogonal Conv. & Shifted RelLU?



Residual ISONet (R-ISONet)
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A Remark about BatchNorm

e \We do not use BatchNorm since:

introduces problems — BN'’s error increases rapidly when

the batch size becomes smaller, caused by inaccurate batch
statistics estimation. This limits BN’s usage for training
larger models and transferring features to computer vision
tasks including detection, segmentation, and video, which
require small batches constrained by memory consumption.

Detection / Segmentation
[Wu-He. '18]

experiments, we found that using BN prevents the model
from learning good representations, as similarly reported

in [35] (which avoids using BN). The model appears to
“cheat” the pretext task and easily finds a low-loss solu-
tion. This is possibly because the intra-batch communica-

Constrastive Learning
[He et al. "19]

As discussed in the results section, Batch Normalization
(BN) is ineffective for small batches, which are the inputs

for Test-Time Training (both standard and online version)
Test-time Training [Sun et al. '20]

e However, using BatchNorm further improves the performance



R-ISONet

ImageNet Top-1 Accuracy

Orthogonal depth 18 | depth 34 | depth50 | depth 101

Convolution

Shifted RelLU

Orthogonal Vanilla+Shortcut | 65.66 N/A N/A N/A
Convolution Fixup* 68.63 71.28 72.40 73.18
(init 0) Fixupsmixup™ 67.37 72.56 76.00 76.17

Scalar

P R-ISONet 69.06 72.17 74.20 75.44
Sh‘fte‘i’ RetU R-ISONetioopout | 69.17 | 73.43 | 76.18 77.08

Best performing method without BatchNorm, on par with ResNet

* re-train from the released code for 100 epochs



R-ISONet: Better Transfer Ability

e Tranfer learning on COCO for object detection & instance segmentation

Methods | mAP®™* mAP™ak

ResNet 35.0 32.2
34 layer

R-ISONet 36.2 33.0

ResNet 37.0 33.9
50layer | ¢

R-ISONet 37.3 34.4




Finally, Evolution of Network Architectures
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Nonlinear Activation

RelLU ELU / SELU Shifted RelLU
early work [Clevert'15, Klambauer'17] [Xiang'17, Singh'19]

- S/

“Input signal is shifted towards positivity”  “Alleviates bias shifting”

?
Leaky ReLU / PReLU Swish Isometry

[Mass'13, He'15] [Ramachandran’17]

_/ /

“Dead neurons prevent effective training” “Automatically search the best activation”



Weight Initialization / Regularization

e Gaussian initialization: early work
“Variance of the signal maintains constant through multiple layers”
— For tanh activation: Xavier initialization [Glorot'10]
— For ReLU activation: Kaiming initialization [He'15]
— For general activation (mean-field theory): [Poole’16, Schoenholz'16]

e Orthogonal initialization
distance preserving (i.e., orthogonality) == variance preserving
— For linear network: Provable benefits of ortho. init. [Saxe'13, Hu'20]
— For nonlinear network: Dynamic isometry [Pennington’'18, Xiao’18]

e Orthogonal regularization
— For ConvNets: [Jia'l7, Cisse'l7, Bansal’17, Zhang'19, Huang'20]
— For RNNs: [Arjovsky'16, Lezcano-Casado'19]
— For GANs: [Brock'18, Liu'19]

Isometry?



Residual Learning

/1 /e scalar = 1 [He’ 16]

Convolution
‘ e scalar = 0 [Goyal'17, Bachlechner’'20]
RelU
l e scalar = 0.1 [Zagoruyko'17]
Convolution

X scalar < e scalar ~ % where L=z=flayers

[Taki'17, Balduzzi'1l7, Qiu'l8,
\Tarnowski’lg, Zhang'19]

Isometry?



Finally, Evolution of Network Architectures

[Mass’13, He’15, Clevert’15, Klambauer’17, Ramachandran’17, Singh’19]

Nonlinear

Isometry ’\,

(energy preserving)

Convolution Residual
) Ism:ahz:tllo,rlf::?mt.10;H€1185')(P.00Ji56' \J Many variances [He’16, Szegedy’16,
choennholz 1, Fennington 18, Alad Goyal’l7, Zagoruyko’17, Taki'17,
* Regularization [Arjovsky’16, Jia’17, Cisse’17, Zhang’19, Bachlechner’20]

Bansal’17, Brock’18, Zhang’19, Huang’20]



Open Problems: Theory

— Optimization: Improving optimization landscape and alleviating
vanishing/exploding gradient?

(Work of [Hu et al. '20] for linear networks. How about nonlinear networks?)

— Generalization: Better generalization bounds?
(Existing work: [Jia et al. '19])

— Robustness: Improved adversarial robustness?
(Empirical work: [Cisse et al. '17])

— GANSs: Performance predicted by generator conditioning?
(Empirical work: [Odena et al. '18])



Open Problems: Method

— Isometry vs. Nonlinearity: What is the best trade-off? /

— Isometry vs. Restricted Isometry: Low-dim. structure of data?




