

Learning a Self-Expressive Network for Subspace Clustering

¹Beijing University of Posts & Telecommunications ² University of California, Berkeley ³ Johns Hopkins University

(EnSC)
e
$$r(c_{ij}) = \lambda |c_{ij}| + \frac{1-\lambda}{2}c_i^2$$

(EnSC, You et al. CVPR'16
+
$$\frac{1-\lambda}{2}c_{ij}^2$$

$$(\mathbf{x}_i, \mathbf{x}_j; \Theta))$$

SENet: learn coefficients c_{ii} via

$$= \sum_{i \neq j} \left(r'(f(\boldsymbol{x}_i, \boldsymbol{x}_j; \Theta)) - \boldsymbol{x}_i^{\top} \boldsymbol{q}_j \right) \frac{\partial f(\boldsymbol{x}_i, \boldsymbol{x}_j; \Theta)}{\partial \Theta},$$

esidual $\boldsymbol{q}_j := \gamma \left(\boldsymbol{x}_j - \sum_{i \neq j} f(\boldsymbol{x}_i, \boldsymbol{x}_j; \Theta) \boldsymbol{x}_i \right).$

ClusterGAN [2 0.905 0.890 DSCDAN [7 0.978 0.941 0.662 0.645 DCCM [7 SSC-OMP 0.421NCSC [89 0.861 EnSC [79 ESC [77 0.971 0.925 0.936 0.668 **0.708** 0.556 SENet

✓ SENet can effectively handle large scale datasets with 60k (CIFAR-10), 70k (MNIST & Fashion-MNIST) and ~190k (EMNIST) images

Code link: <u>https://github.com/zhangsz1998/Self-Expressive-Network</u>

Experiments

SENet tes 2000 SENet test

Table 1. Comparing SENet to EnSC on synthetic data

0.662 0.64

1500 2000

SENet-10000

SENet-2000

SENet-1000

SENet-200

SENet-500

SENet-5000

SENet-10000

(d) EMNIST

Number of Samples