
▪ Previous work has reported reasonable experimental results.

▪ If the methods are ill-posed where did performance come from?

1) Not converging to a true solution for the model in (1).

2) Ad-hoc post processing of the      matrix.

Proposition: (Informal) Most previous formulations based on (1) are ill-posed. For 
any choice of weights the clustering loss can be made arbitrarily small by scaling.
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Summary
▪ Self-expressive deep subspace clustering (SEDSC) [1] is a popular method for 

clustering data from a union of non-linear manifolds.

▪ SEDSC is based on using a neural network to try to map data from non-linear
manifolds into linear subspaces.

▪ Standard techniques can then cluster data from the linear subspaces.

▪ Here we show theoretically and experimentally that there are numerous 
problems with many previously proposed SEDSC formulations.

▪ Globally optimal solution of SEDSC models will map to trivial geometries.

▪ Experimental performance gain is attributable to ad-hoc post-processing.

Theoretical Analysis

▪ The formulation in (1) is often ill-posed from the beginning.

▪ Typically (1) can be reduced by decreasing the magnitude of

▪ Can scale down weights in      and scale up weights in      to keep auto-

encoder loss constant but make clustering loss arbitrarily small.

Experimental Verification

▪ The predicted trivial geometries can be observed in experiments.

▪ Even with very simple synthetic data the model in (1) learns poor 

solutions due to the deficiencies we analyze.

Background

▪ Designed for data supported on multiple linear subspaces.

▪ Each subspace defines a cluster.

▪ Many methods exploit the ‘self-expressive’ property of linear subspaces:

▪ A point in a subspace is a linear combinations of other points in the subspace.

▪ Provably correct clustering under fairly mild conditions [2].

Self-Expressive Term

Regularization to 
avoid trial solutions

▪ Designed for data supported on multiple non-linear manifolds

▪ Use a neural network to map non-linear manifolds to linear subspaces.

▪ Typically an auto-encoder is used.

▪ The latent geometry is regularized with a self-expressive clustering term.
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▪ The above issue can be corrected by normalization or regularization.

▪ The question remains: What is the optimal embedded data geometry?

▪ If the encoder and decoder are highly expressive then the embedded 

geometry can be essentially arbitrary while having 0 auto-encoder loss.

▪ The optimal embedded geometry will minimize the clustering loss term.

▪ Results in trivial geometries in most cases. One example case below (others in paper).

Theorem: Optimal solutions to the problem

are characterized by the set

where     is any signed permutation matrix and    is any vector such that

Original Data Geometry Actual Embedded Geometry

▪ The above argument was made for highly expressive encoders/decoders.

▪ Q: Will this behavior change with small network architectures? A: No.

Proposition: (Informal) Suppose the encoder and decoder are both single-hidden 
layer CNNs with only one convolutional channel and ReLU non-linearities.  Then 
optimal solutions to (1) will have trivial geometries in the embedded space.

Trivial geometries also occur with very simple network architectures.
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No difference in performance between the model in (1) and simple baselines if 
ad-hoc post-processing is used (dashed lines) or not (solid lines) in all methods.
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What About Network Architecture?

Synthetic Data Experiments Confirm Theory

Where Did Reported Performance Come From?
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