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Introduction Model: Double Over-Parameterization (DOP) Experiments
Deep neural networks are highly over-parameterized Goal: Recover an image X, € RE>XWX3 from y = X, + s,, where s, is sparse noise Learning curves for varying images (left) and varying corruption levels (right)
 Background: Image recovery via deep image prior (DIP) [1] (0,g,h) = min|]| y — ( f(6) + gog—hoh )||§ (1) » For DIP, best termination varies for different images and corruption levels
: 0.9.h ~ g « For Ours, no need to terminate and no need to tune any parameters
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« g©g—h®h (®-Hadamard product) over-parameterizes sparse corruption s
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* QOver-parameterization in DIP:

(Seemingly) Problematic: Corrupted

~J 2 m||||on >> ~J O 1 m||||on Even more parameters than DIP, Input 7
. . . . even more global solutions than DIP.
(#parameters In f(e)) (# p|Xe|S In an |mage) Hence, even more prone to overfitting than DIP? Cround.
In principle, f(6) can generate any image! truth

(i.e., not only the desired clean images, but also undesired corrupted images)

Algorithm: Discrepant Learning Rates

Cha"enge (Genuinely) a Blessing: Proper choice of algorithm leads to the desired solutions!
. s « Observation: Learning rate ratio « for @ and r——
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{g, h} in a gradient descent IX.—f(O)llF
i X« lF 30%
Ori1 = 0 — 7 Vol(Ok, gy, i) 08 ' 0.
(2) _ s, —(g@g—hOh) || r _ Corruption
[gm] _ [gk] s [ng(%gk,hk)} | Ts.TF
Rt hi, Vil(0k, gy, hi)
controls the quality of the solution (N
10 12 14
No parameter tuning: Empirically, best o does Learning rate ratio o
| | | j NOT depend on a) test image X, b) sparsity of s,, and c) width of network f(0)
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Early termination solution Global solution: f(0) ~ y Theory: |nsights from Low-rank Modeling
(impractical!) (overfitting!)
Consider the case X, € R"*™ with rank = r < n. Let f(@) = UU ', where U € R™*"’
- - o C(lassical method based on ¢; loss: 100
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» Model: Double over-parameterization of | | | ~ fails for over-param. models (e.g., ' = n) orruption
both the image and the corruption :
_ g _ P Failure of classical robust loss methods for
Algorithm: Discrepant learning rates for o . : Input
_ ) modern over-parameterized models! : : : Pt o
different model parameters i 1000| . 2000 3000 (DIP result is for the best and case-dependent early termination)
L « QOur method based on double over-parameterization terations

Theory: Correctness for low-rank recovery | DIP
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| min || X ||, + 1/ |[s|i st y=X +s
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No need to finetune parameters teration/500 Combined with [3], setting e = /n produces desired solutions (No tuning parameters!)

No need to terminate early ' (baseline)
No need to tune network width ' '
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