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1. Between-Class Discriminative: Features of samples from different 
classes/clusters should be highly uncorrelated and belong to different 
low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same 
class/cluster should be relatively correlated in a sense that they belong to a 
low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for 
each class/cluster should be as large as possible as long as they stay 
uncorrelated from the other classes.

Desired Properties in Learned Features

Intuitive Visualization

MCR2 Desired Properties in Learned Features

Robustness to Label Corruption: Classification Results for features learned 
with labels at different corruption level. CE training means Cross-Entropy 
Training. As we can see, features learned using MCR2 are more robust to label 
corruption:

Clustering: Results based on features learned using self-supervised learning. 
MCR2 also has superior results over multiple datasets: 

Goal: Given a random vector               drawn from a mixture of     distributions,  
                  we seek a good representation             through a continuous 
mapping, , such that:

MCR2 loss aims to maximize the reduction between the coding rate of all features 
and that of the sum of features w.r.t. their classes: 

where                                       . 

- Rate distortion of data with a mixed distribution: The features of     of 
multi-class data may belong to multiple low-dimensional subspaces, and we may 
partition the data     into multiple subsets:                                         . With respect 
to this partition, the average number of bits per sample (the coding rate) is:

where be a set of diagonal matrices whose diagonal entries 
encode the membership of the       samples in the     classes and the diagonal 
entry     of       indicates the probability of sample    belonging to subset   .

- Nonasymptotic rate distortion for finite samples: The average coding length 
per sample (as the sample      is large) subject to the distortion   :

Each sample should be as decorrelated as possible to encourages diversity 
across all learned representations    .

Theorem

Since       is the optimal solution that maximizes the rate 
reduction. We have: 
- Between-class Discriminative: As long as the ambient space is adequately 

large      , the subspaces are all orthogonal to each other, 
I.e.    for      .

- Maximal Diverse Representations: As long as the coding precision is 
adequately high, i.e.,   , each subspace achieves its maximal 
dimension, i.e.  . In addition, the largest singular values of 

are equal.  

Here we provide theoretical guarantee to the properties of learned 
representations: (Theorem 2.1)

We consider 2-dimensional case, with two two distributions      and      .
- ∑ [vol(green spheres)] = sum of coding rate of subspace   .
- ∑ [vol(green spheres + blue spheres)] = sum of coding rate of all samples    . 
- ∑ [vol(blue spheres)] = loss

Here we offer a informational geometric perspective on coding rate reduction 
using sphere packing:

- Setup: Image classification task on CIFAR10 using ResNet18, with   
   .

- Left: A heatmap of the cosine similarity score between features. Each class 
has 5,000 samples and their features span a subspace of over 10 
dimensions. Here we can see that between-class features are discriminative 
and in-class features are highly correlated.

- Right: Singular values after performing Principal Component Analysis on 
each class of features. We can see that each subspace spans approximately 
12-13 dimensions, which in total spans the whole 128 dimensional 
representation space.


