Learning Diverse and Discriminative Representations via the
Principle of Maximal Coding Rate Reduction
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MCR?

MCR? loss aims to maximize the reduction between the coding rate of all features
and that of the sum of features w.r.t. their classes:
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Desired Properties in Learned Features Desired Properties in Learned Features

Goal: Given a random vector z € R” drawn from a mixture of k distributions,
D = {D;}* , we seek a good representation z ¢ R? through a continuous

mapping, f(z,0) = R” — R?, such that:
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Sigular Values

- Rate distortion of data with a mixed distribution: The features of Z of i
multi-class data may belong to multiple low-dimensional subspaces, and we may
partition the data Z into multiple subsets: Z = Z; U Z, U - - - U Z;. With respect
to this partition, the average number of bits per sample (the coding rate) is:
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Components

- Setup: Image classification task on CIFAR10 using ResNet18, with

d 71 .ZT d = 128.
tr(Hj )52 - - Left: A heatmap of the cosine similarity score between features. Each class
where II = {II, € Rmxm}é‘?:l be a set of diagonal matrices whose diagonal entries

has 5,000 samples and their features span a subspace of over 10
dimensions. Here we can see that between-class features are discriminative
encode the membership of the 777 samples in the ke classes and the diagonal
entry II;(¢,¢) of 1I; indicates the probability of sample 7 belonging to subset ] -

Between-Class Discriminative: Features of samples from different
classes/clusters should be highly uncorrelated and belong to different
low-dimensional linear subspaces.

Within-Class Compressible: Features of samples from the same
class/cluster should be relatively correlated in a sense that they belong to a
low-dimensional linear subspace.

Maximally Diverse Representation: Dimension (or variance) of features for
each class/cluster should be as large as possible as long as they stay
uncorrelated from the other classes.
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and in-class features are highly correlated.

Right: Singular values after performing Principal Component Analysis on
each class of features. We can see that each subspace spans approximately
12-13 dimensions, which in total spans the whole 128 dimensional
representation space.

- Nonasymptotic rate distortion for finite samples: The average coding length

per sample (as the sample m is large) subject to the distortion e:

Robustness to Label Corruption: Classification Results for features learned
with labels at different corruption level. CE training means Cross-Entropy

1
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Training. As we can see, features learned using MCR? are more robust to label

Intuitive Visualization

Each sample should be as decorrelated as possible to encourages diversity

Here we offer a informational geometric perspective on coding rate reduction . corruption:
, , across all learned representations 2.
using sphere packing: Ratio=0.1 Rato=0.2 Ratio=0.3 Ratio=0.4 Ratio=0.5
CE Training 90.91% 86.12% 79.15% 7245% 60.37%
MCR? Training| 91.16% 89.70% 88.18% 86.66% 84.30%

Theorem

Here we provide theoretical guarantee to the properties of learned
representations: (Theorem 2.1)

Clustering: Results based on features learned using self-supervised learning.
MCR? also has superior results over multiple datasets:

Since Z* = Z} U --- Z7 is the optimal solution that maximizes the rate Dataset ~ Metric| JULE RTM DEC DAC DCCM MCR*-cn
reduction. We have: NMI 10.192 0.197 0.257 0.395 0496 0.630
- Between-class Discriminative: As long as the ambient space is adequately CIFAR10 ACC |0.272 0.309 0.301 0.521 0.623 0.684
large (d > Zle d;), the subspaces are all orthogonal to each other, ARI10.138 0.115 0.161 0305 0.408  0.508
le. (Z:)T 25 =0 for i+ NMI  |0.103 0.136 0.185 0.285 0.387
Maximal Diverse Representations: As long as the coding precision is CIFAR100 ACC 0'127 0'15_5_35 0.237 0'32Z 0.375
We consider 2-dimensional case, with two two distributions S1and S. adequately high, i.e., et < min;{™ £}, each subspace achieves its maximal ARl 9053 0.050 0087 0175 0.1/8
vol(green spheres)] = sum of coding rate of subspace R°. dimension, i.e. rank(z*) — d; . In addition. the largest d; — 1 singular values of NMI |0.182 0.276 0.365 0.376 0.446
vol(green spheres + blue spheres)] = sum of coding rate of all samples R. Z* are equal. ’ STL10O ACC 0.182 0.359 O.4ZO 0.482 0491
vol(blue spheres)] = loss j ARl |0.164 0.186 0.256 0.262 0.290
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