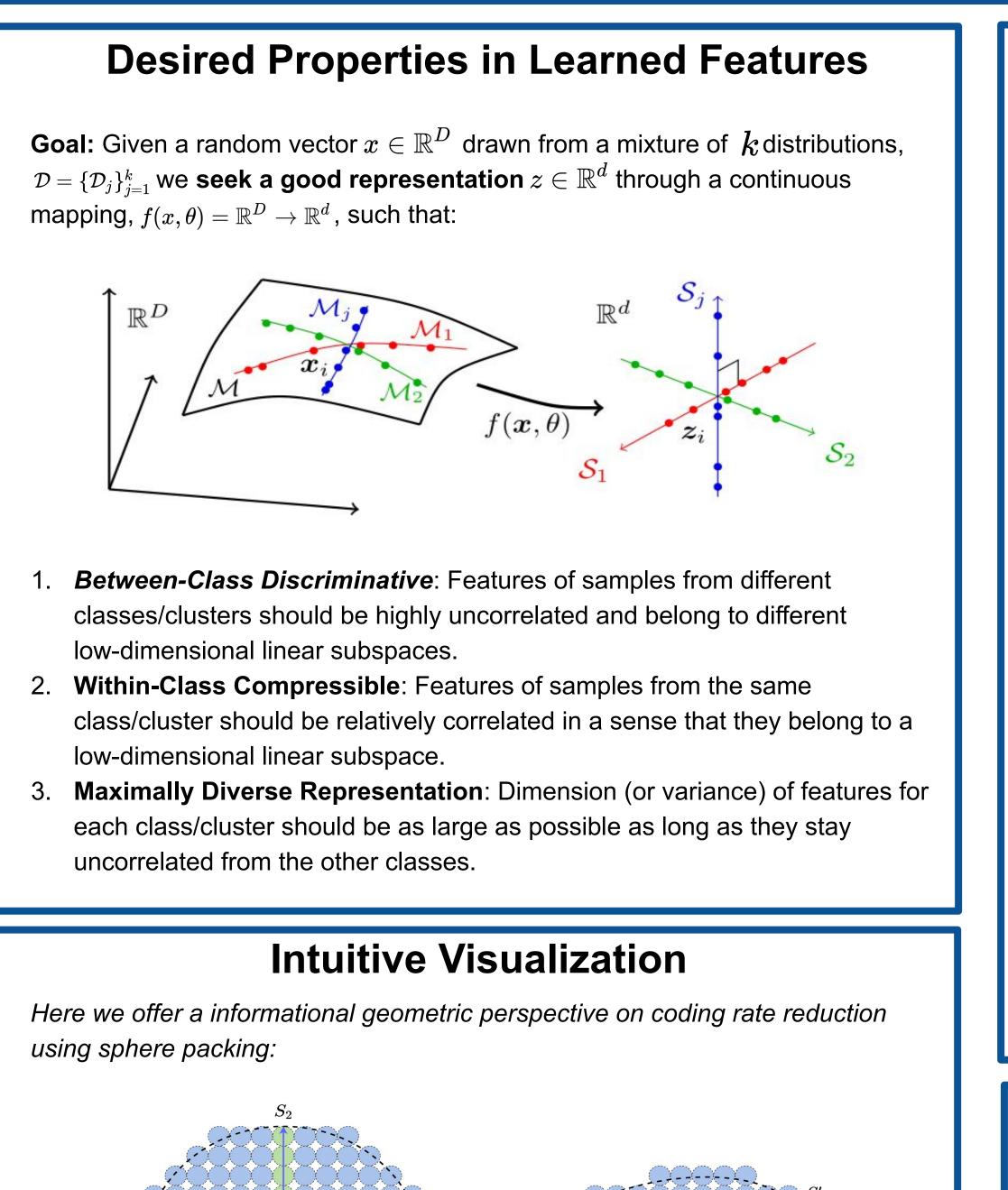
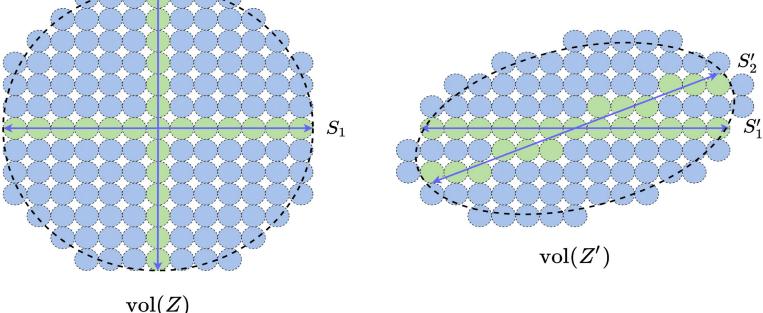


Learning Diverse and Discriminative Representations via the **Principle of Maximal Coding Rate Reduction**





We consider 2-dimensional case, with two two distributions S_1 and S_2 .

- \sum [vol(green spheres)] = sum of coding rate of subspace R^c .
- $\sum [vol(green spheres + blue spheres)] = sum of coding rate of all samples R.$
- \sum [vol(blue spheres)] = loss

Yaodong Yu^{*1}, Kwan Ho Ryan Chan^{*1}, Chong You¹, Chaobing Song^{1,2}, Yi Ma¹ University of California, Berkeley¹, Tsinghua University²

MCR²

MCR² loss aims to maximize the reduction *between* the coding rate of all features and that of the sum of features w.r.t. their classes:

$$\max_{\boldsymbol{\theta}} \ \Delta R(\boldsymbol{\theta}) = \underbrace{\frac{1}{2} \log \det \left(I + \frac{d}{m\epsilon^2} Z Z^{\top}\right)}_{R} - \underbrace{\sum_{j=1}^{k} \frac{\operatorname{tr}(\Pi_j)}{2m} \log \det \left(I + \frac{d}{\operatorname{tr}(\Pi_j)\epsilon^2} Z \Pi_j Z^{\top}\right)}_{R^c}$$
 here $\|Z_j(\boldsymbol{\theta})\|_F^2 = m_j, \ j \in [k]$

- Rate distortion of data with a mixed distribution: The features of Z of multi-class data may belong to multiple low-dimensional subspaces, and we may partition the data Z into multiple subsets: $Z = Z_1 \cup Z_2 \cup \cdots \cup Z_k$. With respect to this partition, the average number of bits per sample (the coding rate) is:

$$R^{c}(Z,\epsilon \mid \Pi) \doteq \sum_{j=1}^{k} \frac{\operatorname{tr}(\Pi_{j})}{2m} \log \det \left(I + \frac{d}{\operatorname{tr}(\Pi_{j})\epsilon^{2}} Z \Pi_{j} Z^{\top} \right)$$

where $\Pi = \{\Pi_j \in \mathbb{R}^{m \times m}\}_{j=1}^k$ be a set of diagonal matrices whose diagonal entries encode the membership of the m samples in the k classes and the diagonal entry $\Pi_i(i,i)$ of Π_i indicates the probability of sample i belonging to subset j.

- Nonasymptotic rate distortion for finite samples: The average coding length per sample (as the sample m is large) subject to the distortion ϵ :

$$R(Z,\epsilon) \doteq \frac{1}{2}\log\det\left(I + \frac{d}{m\epsilon^2}ZZ^{\top}\right)$$

Each sample should be as decorrelated as possible to encourages diversity across all learned representations \mathcal{Z} .

Theorem

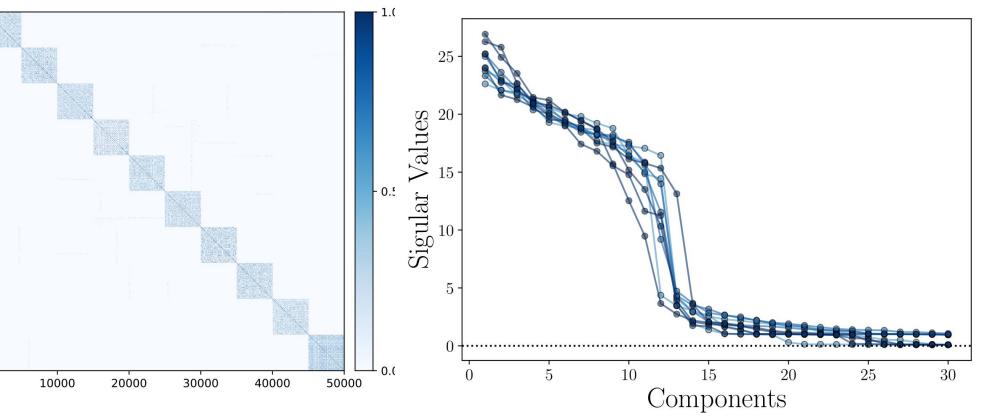
Here we provide theoretical guarantee to the properties of learned representations: (Theorem 2.1)

Since $Z^* = Z_1^* \cup \cdots Z_k^*$ is the optimal solution that maximizes the rate reduction. We have:

- Between-class Discriminative: As long as the ambient space is adequately large $(d \ge \sum_{j=1}^{k} d_j)$, the subspaces are all orthogonal to each other, I.e. $(Z^*_i)^ op Z^*_i = 0$ for i
 eq j .
- Maximal Diverse Representations: As long as the coding precision is adequately high, i.e., $\epsilon^4 < \min_j \{\frac{m_j}{m} \frac{d^2}{d^2}\}$, each subspace achieves its maximal dimension, i.e. $\operatorname{rank}(Z_i^*) = d_j$. In addition, the largest $d_j - 1$ singular values of Z_i^* are equal.

Robustness to Label Corruption: Classification Results for features learned with labels at different corruption level. CE training means Cross-Entropy Training. As we can see, features learned using MCR² are more robust to label corruption:

Desired Properties in Learned Features



Setup: Image classification task on CIFAR10 using ResNet18, with d = 128.

Left: A heatmap of the cosine similarity score between features. Each class has 5,000 samples and their features span a subspace of over 10 dimensions. Here we can see that *between-class features are discriminative* and in-class features are highly correlated.

Right: Singular values after performing Principal Component Analysis on each class of features. We can see that each subspace spans approximately 12-13 dimensions, which in total spans the whole 128 dimensional representation space.

	Ratio=0.1	Ratio=0.2	Ratio=0.3	Ratio=0.4	Ratio=0.5
CE Training			79.15%		
MCR ² Training	91.16%	89.70%	88.18%	86.66%	84.30%

Clustering: Results based on features learned using self-supervised learning. MCR² also has superior results over multiple datasets:

Dataset	Metric	JULE	RTM	DEC	DAC	DCCM	$\rm MCR^{2}-Ctrl}$
	NMI	0.192	0.197	0.257	0.395	0.496	0.630
CIFAR10	ACC	0.272	0.309	0.301	0.521	0.623	0.684
	ARI	0.138	0.115	0.161	0.305	0.408	0.508
CIFAR100	NMI	0.103	-	0.136	0.185	0.285	0.387
	ACC	0.137	-	0.185	0.237	0.327	0.375
	ARI	0.033		0.050	0.087	0.173	0.178
STL10	NMI	0.182	-	0.276	0.365	0.376	0.446
	ACC	0.182	-	0.359	0.470	0.482	0.491
	ARI	0.164	-	0.186	0.256	0.262	0.290