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Introduction

e Vision datasets often contain multiple classes, each lying in a low-dimensional subspace

e Subspace clustering can discover these subspaces in an unsupervised manner

Challenges

e Many vision datasets are imbalanced e Many vision datasets are large scale and

and the performance of classical meth-  classical methods are not able to deal

ods degrades with the imbalance level with large-scale data
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e Scalable methods do exist, but they still
have quadratic complexity

e Subsampling methods do not apply since
the dataset is unlabeled before clustering

Contributions

Key idea: select a set of exemplars A C & = {Xj}é-\[:1 and use them to cluster A

e Our method handles class-imbalanced data if the selected set of exemplars is balanced

e Our method handles large-scale data if the selected set of exemplars is small

Prior method

Fach point x; € X' 1s expressed In terms
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Proposed solution

Fach point x; In X' 1s expressed 1n terms

of a few points in X 1.e. of a few exemplars in A, i.e.

min [[cj[li+3-[Ix— > cxill;

min ||c;|l; +2 - ||x; —
chRN” il 21 c;€RY i, €X]

Exemplar Subspace Clustering

o Step 1: Select a set of exemplars A that minimizes the self-representation cost function

%HX]'— Z ¢;iXill3, where X\ € (1, o0] (1)

1:X; EAX

F)\(X) = max min, Ic;il

— [\(X)) measures how well the data X is covered by the exemplars A} (see figure on right)

e Step 2: For each x; € X', compute c; by solving the following optimization problem
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Let X = {Xj}gzl and XQ = {Xj}§:1 g X.
The shaded area represents conv(£Xj).
Fo(&)) is the reciprocal of the length of
the ray {tx, :t > 0} inside conv(+A))

A Farthest First Search (FFS) Algorithm

e Since minimizing (1) is NP-hard in general, we propose to compute Xo(k) X" = {x1, %2, x5}

e Step 3: Compute nearest neighbor affinity A from {cj}é\le and apply spectral clustering

e Theorem 1: i) X contains at least dim(S) points from each subspace §, ii) the affinity
A has no wrong connections. The result holds even if data X is class imbalanced

(i+1)
X() — {X17 X2, X3, X4}

by iteratively selecting the worst represented point (see figure on right)

1: Select x € X at random and set Xo(l) — {x}

2: fori=1,---  /k—1do

3 X =x" U argmaxg cx ming ey [|ejfl+ 2x; — 3
4: end for

ey CirXilla

e Theorem 2: XOW found by FFS satisfies the statement of Theorem 1

Experiments on Street Sign and Letter Image Databases

e We use two datasets that are class imbalanced and large scale
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—EMNIST: handwritten letter database containing 190,998 images e bedeTgn IKimnonarstuvesy Ve 000000006
Number of points in each class of EMNIST (left) and GTSRB (right)

—GTHRB: street sign database containing 12,390 images
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e On EMNIST, we vary the number of exemplars k£ € [50,380] . - s
— Accuracy: ESC-FFS outperforms SSC when £ > 200 ' I I.II - e
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—Runtime: ESC-FFS is ~ 10 times faster than S5C, and is = s000 g Runtime (sec.) = s
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e On GTSRB, we fix the number of exemplars to be 160 . N e . .I II||
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Results on EMNIST Results on GTSRB

—ESC-FFS has highest accuracy and moderate runtime
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