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Introduction
•Vision datasets often contain multiple classes, each lying in a low-dimensional subspace

•Subspace clustering can discover these subspaces in an unsupervised manner

Challenges
•Many vision datasets are imbalanced

and the performance of classical meth-

ods degrades with the imbalance level

(Imbalanced) 10 25 40 (Balanced)

Percentage of points in the first subspace

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n

g
 a

c
c
u

ra
c
y

Sparse Subspace Clustering
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•Subsampling methods do not apply since

the dataset is unlabeled before clustering

•Many vision datasets are large scale and

classical methods are not able to deal

with large-scale data
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•Scalable methods do exist, but they still

have quadratic complexity

Contributions
Key idea: select a set of exemplars X ∗0 ⊆ X := {xj}Nj=1 and use them to cluster X
•Our method handles class-imbalanced data if the selected set of exemplars is balanced

•Our method handles large-scale data if the selected set of exemplars is small

Prior method

Each point xj ∈ X is expressed in terms

of a few points in X , i.e.

min
cj∈RN

‖cj‖1 + λ
2 · ‖xj −

∑
i 6=j:xi∈X

cijxi‖2
2

Proposed solution

Each point xj in X is expressed in terms

of a few exemplars in X ∗0 , i.e.

min
cj∈RN

‖cj‖1 + λ
2 · ‖xj −

∑
i:xi∈X ∗0

cijxi‖2
2

Exemplar Subspace Clustering
•Step 1: Select a set of exemplars X ∗0 that minimizes the self-representation cost function

Fλ(X0) := max
xj∈X

min
cj∈RN

‖cj‖1 + λ
2‖xj −

∑
i:xi∈X0

cijxi‖2
2, where λ ∈ (1,∞] (1)

–Fλ(X0) measures how well the data X is covered by the exemplars X0 (see figure on right)

•Step 2: For each xj ∈ X , compute c∗j by solving the following optimization problem

c∗j = arg min
cj∈RN

‖cj‖1 + λ
2 · ‖xj −

∑
i:xi∈X ∗0

cijxi‖2
2

•Step 3: Compute nearest neighbor affinity A from {c∗j}Nj=1 and apply spectral clustering

•Theorem 1: i) X ∗0 contains at least dim(S) points from each subspace S, ii) the affinity

A has no wrong connections. The result holds even if data X is class imbalanced
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Let X = {xj}6
j=1 and X0 = {xj}3

j=1 ⊆ X .
The shaded area represents conv(±X0).
F∞(X0) is the reciprocal of the length of
the ray {tx4 : t ≥ 0} inside conv(±X0)

A Farthest First Search (FFS) Algorithm
•Since minimizing (1) is NP-hard in general, we propose to compute X (k)

0

by iteratively selecting the worst represented point (see figure on right)

1: Select x ∈ X at random and set X (1)
0 ← {x}

2: for i = 1, · · · , k − 1 do
3: X (i+1)

0 = X (i)
0 ∪ arg maxxj∈X mincj∈RN ‖cj‖1 + λ

2‖xj −
∑

i:xi∈X (i)
0
cijxi‖2

2

4: end for

•Theorem 2: X (k)
0 found by FFS satisfies the statement of Theorem 1

X (i)
0 = {x1,x2,x3}
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X (i+1)
0 = {x1,x2,x3,x4}
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Experiments on Street Sign and Letter Image Databases
•We use two datasets that are class imbalanced and large scale

–EMNIST: handwritten letter database containing 190,998 images

–GTSRB: street sign database containing 12,390 images Number of points in each class of EMNIST (left) and GTSRB (right)

•On EMNIST, we vary the number of exemplars k ∈ [50, 380]

–Accuracy: ESC-FFS outperforms SSC when k > 200

–Runtime: ESC-FFS is ∼ 10 times faster than SSC, and is

similar to ESC-Rand which uses random exemplar selection

•On GTSRB, we fix the number of exemplars to be 160

–ESC-FFS has highest accuracy and moderate runtime
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