

Provable Self-Representation Based Outlier Detection in a Union of Subspaces

Introduction

• Most collected visual data today are unlabeled/weakly labeled • High-dimensional data often lie approx. in low-dimensional subspaces | • Observation: each data \mathbf{x}_i can be expressed as a linear combination • Subspace clustering is the problem of clustering data into subspaces • This work addresses sensitivity of subspace clustering to **outliers**

Prior Work & Challenges

- Robust PCA methods (e.g. REAPER, Outlier Pursuit) require inliers drawn from a single subspace
- Low-rank methods (e.g., LRR) require inlier subspaces to be independent
- Other methods (TSC, CoP, ℓ_1 -thresholding) require dense inliers and/or incoherent outliers

Challenges: multiple subspaces, unknown number of subspaces and their \bullet Step 2. Define a random walk from $\{c_i\}$: dimensions, sparsity of inliers, close-by outliers, etc.

Contributions

• Outlier detection by using *self-representation* and *random walk*

Self-representation allows our method to handle multiple subspaces, Step 3. Compute stationary distribution: and the number of subspaces and their dimensions are not required Random walk allows our method to explore contextual information, hence our method can handle sparsity of inliers and close-by outliers Our method is provably correct in identifying outliers

This work was supported by the grant NSF-IIS 1447822.

Daniel P. Robinson René Vidal Chong You Johns Hopkins University, Baltimore, MD, 21218, USA

•••/ outliers

• Task: cluster data $X = [\mathbf{x}_1, \cdots, \mathbf{x}_N]$ in a union of subspaces of a few others from its own subspace, i.e. $\mathbf{x}_{i} = X\mathbf{c}_{i}, \mathbf{c}_{ij} = 0$ • Algorithm: find such representation by solving sparse optimization $\min_{\mathbf{c}_j} \|\mathbf{c}_j\|_1$ s.t. $\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$, define affinity between any two points \mathbf{x}_i , \mathbf{x}_j to be $|[\mathbf{c}_j]_i|$, then apply spectral clustering • This work: we extend the method to deal with outliers in data X

Input: unlabeled dataset $X = [\mathbf{x}_1, \cdots, \mathbf{x}_N]$ that contains both inliers and outliers.

• Step 1. Compute data self-representation:

 $\min_{\mathbf{i}} \lambda \|\mathbf{c}_j\|_1 + \frac{1-\lambda}{2} \|\mathbf{c}_j\|_2^2 \quad \text{s.t. } \mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$

-If \mathbf{x}_j is inlier: $[\mathbf{c}_j]_i \neq 0 \rightarrow \mathbf{x}_i$ is inlier -If \mathbf{x}_i is outlier: $[\mathbf{c}_i]_i \neq 0 \rightarrow \mathbf{x}_i$ can be either inlier or outlier

 $[P]_{ij} = |[\mathbf{c}_i]_j| / ||\mathbf{c}_i||_1$

-There is no transition from inlier to outlier -Any random walker will end up in inliers

$$\bar{\pi}^{(T)} = \frac{1}{T} \sum_{t=1}^{I} \pi^{(0)} P^t$$

where $\pi^{(0)} = [1/N, \cdots, 1/N]$ is uniform

IEEE 2017 Conference on Computer Vision and Pattern Recognition

