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Motivation Guaranteed correct connections
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e Vision datasets often contain multiple classes, each lying in a low-dimensional subspace Suppose that x; € &;. Then, ¢; gives correct connections if Randomly senerate n subspaces of dimension d in ambient

e Subspace clustering: cluster data that lie in a union of subspaces dimension D, and pd + 1 points from each subspace. {cj}é-vz .

oives correct connections with high probability it
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e 11 captures the similarity between &, and all other subspaces d c“(p)logp

o r captures the distribution of points in subspace Sy D = 12 log N

o W/ is the dual points/residual points for SSC-BP /SSC-OMP

e Same condition for SSC-BP /SSC-OMP, with different probability

Experiments on Synthetic, Face Image and Digit Image Data
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e Synthetic data: draw 5 subspaces of dimension 6 in ambient
dimension 9; draw equal number of points from each subspace
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o Clustering accuracy: SSC-OMP is slightly outperformed by SSC-
BP, and the difference decreases as number of points increases

e Approach

Clustering accuracy

—»tep 1: build data affinity e Running time: SSC-OMP is orders of magnitude faster than |
—Step 2: apply spectral clustering SSC-BP, and is able to handle up to 100,000 points efficiently o N f T e N f' T
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e Challenge: distance based affinity fails at the in- point D

Running time (log scale)

tersection of subspaces
e Solution: learn affinity by data self representation, / e MNIST handwritten digit database
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ie, x; = Xc;, where X = [x1,..., Xy e First time to test on 60,000 images t : £
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Sparse Subspace Clustering (SSC) e Running time: SSC-OMP can handle 3 - e g CEE
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e Learn affinity by finding the sparsest data self representation No. of points No. of points
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Prior Method Contribution e First time to test on all 38 subjects : S
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® Properties: * Properties: e Running time: SSC-OMP is > 100 i
\/ Guaranteed correct connections un- \/ Guaranteed correct connections under times faster than SSC-BP .
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