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Motivation

•Vision datasets often contain multiple classes, each lying in a low-dimensional subspace

•Subspace clustering: cluster data that lie in a union of subspaces

Spectral Subspace Clustering

•Approach

–Step 1: build data affinity

–Step 2: apply spectral clustering

•Challenge: distance based affinity fails at the in-

tersection of subspaces

•Solution: learn affinity by data self representation,

i.e., xj = Xcj, where X = [x1, . . . ,xN ]

Sparse Subspace Clustering (SSC)

•Learn affinity by finding the sparsest data self representation

min
cj
‖cj‖0 s.t. xj = Xcj, cjj = 0

Prior Method
•Basis Pursuit (BP):

–Replace ‖cj‖0 with ‖cj‖1

•Properties:

XGuaranteed correct connections un-

der broad conditions

×Not scalable: solved by the CVX

software or ADMM algorithm

Contribution
•Orthogonal Matching Pursuit (OMP):

–Choose one point at a time

•Properties:

XGuaranteed correct connections under

broad conditions

XScalable: performance is verified on

100,000 data points

Guaranteed correct connections
Theorem
Suppose that xj ∈ S`. Then, cj gives correct connections if

µ(W `
j , X

−`) < r`

•µ captures the similarity between S` and all other subspaces

• r captures the distribution of points in subspace S`
•W `

j is the dual points/residual points for SSC-BP/SSC-OMP

Theorem
Randomly generate n subspaces of dimension d in ambient

dimension D, and ρd + 1 points from each subspace. {cj}Nj=1

gives correct connections with high probability if

d

D
<
c2(ρ) log ρ

12 logN

•Same condition for SSC-BP/SSC-OMP, with different probability

Experiments on Synthetic, Face Image and Digit Image Data

•Synthetic data: draw 5 subspaces of dimension 6 in ambient

dimension 9; draw equal number of points from each subspace

•Clustering accuracy: SSC-OMP is slightly outperformed by SSC-

BP, and the difference decreases as number of points increases

•Running time: SSC-OMP is orders of magnitude faster than

SSC-BP, and is able to handle up to 100,000 points efficiently

•MNIST handwritten digit database

•First time to test on 60,000 images

•Clustering accuracy: SSC-OMP ob-

tains the best performance

•Running time: SSC-OMP can handle

more points than other methods

•Extended Yale B face database

•First time to test on all 38 subjects

•Clustering accuracy: SSC-OMP and

SSC-BP achieves state of the art

•Running time: SSC-OMP is > 100

times faster than SSC-BP
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