

Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering René Vidal[†]

Chong You[†] [†]Center for Imaging Science, Johns Hopkins University, Baltimore, USA

Introduction

• Vision datasets often contain multiple classes, each lying in a low-dimensional subspace • Subspace clustering: cluster data that lie in a union of subspaces

Prior Work

- Data from a union of subspaces is self-expressive, i.e., $\mathbf{x}_j = X \mathbf{c}_j, X = [\mathbf{x}_1, \cdots, \mathbf{x}_N]$ -find self-expression with regularization $f(\cdot)$: $\min_{\mathbf{c}_j} f(\mathbf{c}_j)$ s.t. $\mathbf{x}_j = X\mathbf{c}_j, c_{jj} = 0$ -apply spectral clustering to data affinity $|c_{ij}| + |c_{ji}|$ to get the clusters
- Sparse subspace clustering: $f(\cdot) = \|\cdot\|_1$ — Sparse coefficient & few connections \checkmark Guaranteed to give only correct connections under broad conditions
- \times Each cluster is not well connected
- \times Not scalable: difficult to solve

Chun-Guang Li^{*} Daniel P. Robinson[‡] *School of Information and Communication Engineering, [‡]Department of Applied Mathematics and Statistics Johns Hopkins University, Baltimore, USA Beijing University of Posts and Telecommunications, China

Least squares regression: $f(\cdot) = \|\cdot\|_2^2$ — Dense coefficient & many connections \times There may exist many wrong connections in general cases

- \checkmark Each cluster is well connected
- \times Not scalable: requires large memory

Geometry of EnSC: Correct Connections vs. Connectivity

- Conditions for guaranteed correct connection

- Our EnSC achieves the best
- EnSC with our ORGEN als -Traditional SSC with ADI not handle MNIST and C
- -Our method is mostly as method (TSC) and the gre

• Consider problem (1), assume $\mathbf{x}_j \in \mathcal{S}_{\ell}$ and that all data have unit ℓ_2 norm • Lemma [Geometry of solution]: If no points in other subspaces lie in oracle region, then $c_{ij} \neq 0$ if and only if \mathbf{x}_i lies in the oracle region -Oracle region is calculated by solving oracle problem using points in \mathcal{S}_{ℓ} • Lemma [Size of oracle region, informal]: An upper bound on the size of the oracle region decreases as the trade-off parameter λ increases • Conclusion: λ provides a correct connection/connectivity tradeoff -Larger $\lambda \implies$ smaller oracle region \implies easier to get only connect connections -Smaller $\lambda \implies$ larger oracle region \implies more points in \mathcal{S}_{ℓ} are connected

 $-\delta_j$: oracle point, lies in \mathcal{S}_{ℓ} and is the center of the oracle region $-\mu(\delta_j, X^{-\ell}) / \mu(\delta_j, X^{\ell}_{-j})$: coherence (max absolute inner product) between δ_j and points in other subspaces / in $S_{\ell} \setminus \{\mathbf{x}_j\}$ -Role of λ : condition is easier to be satisfied for larger λ

Theorem

gives correct connections if

ORacle Guided Elastic Net (ORGEN) Algorithm

• Observation: if the support set T of the solution \mathbf{c}_i to (1) is known, then problem (1) can be reduced to a small scale problem • Algorithm: solve a sequence of small scale problems on small support sets T_k ; the support sets are chosen such that T_{k+1} include points in the oracle region computed from T_k

• Convergence: T_k converges to T in finite number of iterations

Experiments

clustering accuracy			Clustering accuracy			
gorithm is efficient		N	TSC	OMP	SSC	LRS
MM algorithm can-	Coil-100	7,200	61.32	42.93	57.10	55.7
CovType databases	PIE	$11,\!554$	22.15	24.06	41.94	46.6
efficient as the kNN	MNIST	70,000	85.00	93.07	-	-
eedy method (OMP)	CovType	581,012	35.45	48.76	-	-

[1] E. Elhamifar and R. Vidal., Sparse Subspace Clustering, In IEEE Conf. in Computer Vision and Pattern Recognition, 2009. [2] M. Soltanolkotabi and E.J. Candes., A Geometric Analysis of Subspace Clustering with Outlier, In Annals of Statistics, 2013. [3] C. Lu et al., Robust and Efficient Subspace Segmentation via Least Squares Regression, In European Conference on Computer Vision, 2012.

