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Introduction

•Vision datasets often contain multiple classes, each lying in a low-dimensional subspace

•Subspace clustering: cluster data that lie in a union of subspaces

Prior Work

•Data from a union of subspaces is self-expressive, i.e., xj = Xcj, X = [x1, · · · ,xN ]

–find self-expression with regularization f (·): mincj f (cj) s.t. xj = Xcj, cjj = 0

– apply spectral clustering to data affinity |cij| + |cji| to get the clusters

Sparse subspace clustering: f (·) = ‖ · ‖1

−Sparse coefficient & few connections

XGuaranteed to give only correct con-

nections under broad conditions

×Each cluster is not well connected

×Not scalable: difficult to solve

Least squares regression: f (·) = ‖ · ‖2
2

−Dense coefficient & many connections

×There may exist many wrong connec-

tions in general cases

XEach cluster is well connected

×Not scalable: requires large memory

Contributions
•Elastic net Subspace Clustering (EnSC)

min
cj
λ‖cj‖1 +

1− λ
2
‖cj‖2

2

s.t. xj = Xcj, cjj = 0
(1)

•λ ∈ [0, 1] controls a trade-off between correct

connection and connectivity

XGuaranteed correct connections.

X Improved connectivity by choosing λ

XWe propose a new scalable algorithm
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Geometry of EnSC: Correct Connections vs. Connectivity
•Consider problem (1), assume xj ∈ S` and that all data have unit `2 norm

•Lemma [Geometry of solution]: If no points in other subspaces lie in oracle

region, then cij 6= 0 if and only if xi lies in the oracle region

–Oracle region is calculated by solving oracle problem using points in S`
•Lemma [Size of oracle region, informal]: An upper bound on the size of the

oracle region decreases as the trade-off parameter λ increases

•Conclusion: λ provides a correct connection/connectivity tradeoff

–Larger λ =⇒ smaller oracle region =⇒ easier to get only connect connections

–Smaller λ =⇒ larger oracle region =⇒ more points in S` are connected

S`

points in S`\{xj} points in
other subspaces

•Conditions for guaranteed correct connection

– δj: oracle point, lies in S` and is the center of the oracle region

–µ(δj, X
−`) / µ(δj, X

`
−j): coherence (max absolute inner product)

between δj and points in other subspaces / in S`\{xj}
–Role of λ: condition is easier to be satisfied for larger λ

Theorem
Suppose that xj ∈ S`. Then, the solution cj to (1)

gives correct connections if

µ(δj, X
−`) <

µ(δj, X
`
−j)

2

µ(δj, X`
−j) + 1−λ

λ

.

ORacle Guided Elastic Net (ORGEN) Algorithm

•Observation: if the support set T of the solution cj to (1) is

known, then problem (1) can be reduced to a small scale problem

•Algorithm: solve a sequence of small scale problems on small

support sets Tk; the support sets are chosen such that Tk+1

include points in the oracle region computed from Tk

•Convergence: Tk converges to T in finite number of iterations Support set Tk Oracle region on Tk Support set Tk+1

Experiments
•Our EnSC achieves the best clustering accuracy

•EnSC with our ORGEN algorithm is efficient

–Traditional SSC with ADMM algorithm can-

not handle MNIST and CovType databases

–Our method is mostly as efficient as the kNN

method (TSC) and the greedy method (OMP)

Clustering accuracy (%) Running time (min.)

N TSC OMP SSC LRSC EnSC TSC OMP SSC LRSC EnSC

Coil-100 7,200 61.32 42.93 57.10 55.76 69.24 2 3 127 3 3

PIE 11,554 22.15 24.06 41.94 46.65 52.98 3 5 412 12 13

MNIST 70,000 85.00 93.07 - - 93.79 30 6 - - 28

CovType 581,012 35.45 48.76 - - 53.52 999 783 - - 1452
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