Diffusion Kernels on Graphs

Bruno Jedynak

Johns Hopkins University

February 9, 2007
Outline

- Examples of Diffusion
- Motivations for a heat equation when the space variable belongs at the vertices of a graph
- Heat equation when the space variable belongs \mathbb{R}^2
- Heat equation over a graph
- Application: Models for natural language
Example of diffusion
Example of diffusion
Motivation for a Heat equation over a graph. Image processing

Image smoothing

Image: function \(g : S \mapsto \mathbb{R} \), \(S \) is a discrete set of pixels.

Noisy image: \(g(s) + \epsilon(s) \)

Recover \(g \) by diffusing.

Idea: Build a graph. The vertices are \(S \). Define the edges ... Start at \(g(s) + \epsilon(s) \) and diffuse and stop ...
Motivation for a Heat equation over a graph. Language processing

Closed vocabulary V, $\# V = K \approx 10^5$

Training set of words x_1, \ldots, x_m, counts $n(w_1), \ldots, n(w_K)$

Want to build a probability mass function π over the words of V

i.e $\pi(w_k) \geq 0$ and $\sum_{k=1}^{K} \pi(w_k) = 1$

What is the probability assigned to unseen words? ...

Idea: Build a graph. Vertices $= V$, Define the edges ... start at $\pi_0(w_k) = m^{-1} n(w_k)$ and diffuse and stop ...
Heat equation in \mathbb{R}^2

$x = (x_1, x_2) \in \mathbb{R}^2, y = (y_1, y_2) \in \mathbb{R}^2, t \geq 0, \alpha > 0$

$K_t(x, y)$ is the temperature at time t at x when starting at time $t = 0$ with all the heat concentrated at y. It is called a diffusion kernel.

$$\text{for all } x, \text{ for all } t > 0, \frac{\partial}{\partial t} K_t(x, y) = \alpha \triangle K_t(x, y)$$

\triangle stands for Laplacian.

$$\triangle K_t(x, y) = \frac{\partial^2}{\partial^2 x_1} K_t((x_1, x_2), y) + \frac{\partial^2}{\partial^2 x_2} K_t((x_1, x_2), y)$$
Heat equation in \(\mathbb{R}^2 \)

Without restricting the domain, the solution is given by

\[
K_t(x, y) = \frac{1}{4\pi \alpha t} \exp \left(-\frac{1}{4\alpha t} \left((x_1 - y_1)^2 + (x_2 - y_2)^2 \right) \right)
\]

\(K_t(x, y) \) is the density of a

\[
N(y, 2\alpha t \ I_d)
\]

If now the temperature at time 0 is given by \(g(x) \) then the solution of the heat equation is the convolution

\[
\int \int K_t(x, y) g(y) dy
\]
Discretization of the Laplacian

\[x = (x_1, x_2) \in \mathbb{R}^2, \quad f : \mathbb{R}^2 \rightarrow \mathbb{R} \]

\[\frac{\partial}{\partial x_1} f(x_1, x_2) \approx \frac{1}{h} \left(f(x_1 + \frac{h}{2}, x_2) - f(x_1 - \frac{h}{2}, x_2) \right) \]

\[\frac{\partial^2}{\partial^2 x_1} f(x_1, x_2) \approx \frac{1}{h} \left(\frac{\partial}{\partial x_1} f(x_1 + \frac{h}{2}, x_2) - \frac{\partial}{\partial x_1} f(x_1 - \frac{h}{2}, x_2) \right) \]

\[\approx \frac{1}{h} \left(\frac{1}{h} \left(f(x_1 + h, x_2) - f(x_1, x_2) \right) - \frac{1}{h} \left(f(x_1, x_2) - f(x_1 - h, x_2) \right) \right) \]

\[\approx \frac{1}{h^2} \left(f(x_1 + h, x_2) + f(x_1 - h, x_2) - 2f((x_1, x_2)) \right) \]

\[\frac{\partial^2}{\partial^2 x_2} f(x_1, x_2) \approx \frac{1}{h^2} \left(f(x_1, x_2 + h) + f(x_1, x_2 - h) - 2f((x_1, x_2)) \right) \]
Discretization of the Laplacian

\[\triangle f(x_1, x_2) = \frac{\partial^2}{\partial^2 x_1} f(x_1, x_2) + \frac{\partial^2}{\partial^2 x_2} f(x_1, x_2) \]

\[= \frac{1}{h^2} (f(x_1 + h, x_2) + f(x_1 - h, x_2) - 2f((x_1, x_2)) + \frac{1}{h^2} (f(x_1, x_2 + h) + f(x_1, x_2 - h) - 2f((x_1, x_2)) \]

Define \(\mathcal{V}(x) = \{(x_1 + h, x_2), (x_1 - h, x_2), (x_1, x_2 - h), (x_1, x_2 + h)\} \) and \(d(x) = \#\mathcal{V}(x) \) then

\[\triangle f(x) = \frac{1}{h^2} \left(\left(\sum_{y \in \mathcal{V}(x)} f(y) \right) - d(x)f(x) \right) \]
Heat equation over a graph

$G(V, E)$ a non oriented graph.

$V = \{x_1, \ldots, x_n\}$ is the finite set of vertices.

$E \subseteq V \times V$ is the set of edges. If $(x, y) \in E$, we denote $x \sim y$. Assume no edge from a vertex to itself. Assume G is connected.

The degree of $x \in V$ is $d(x) = \sum_{y \in V} \delta(x \sim y)$

$f : V \mapsto \mathbb{R}$ can be seen as a function or as a vector $(f(x_1), \ldots, f(x_n))^T$

$H : V \times V \mapsto \mathbb{R}$ can be seen as a function or as a $n \times n$ matrix.
Define the Laplacian (choose $h = 1$)

$$\triangle f(x) = \left(\sum_{y \in \mathcal{V}(x)} f(y) \right) - d(x)f(x)$$

$$= \left(\sum_{y : y \sim x} f(y) \right) - d(x)f(x)$$

$$= \sum_{y \in \mathcal{V}} \left(f(y)\delta(y \sim x) - d(y)f(y)\delta(x = y) \right)$$

$$= \sum_{y \in \mathcal{V}} \left(\delta(y \sim x) - d(y)\delta(x = y) \right) f(y)$$

$$= \sum_{y \in \mathcal{V}} H(x, y)f(y)$$

$$= Hf(x)$$
\[H(x, y) = \delta(y \sim x) - d(y)\delta(x = y) \]

\[H = A - D \]

\[A(x, y) = \delta(x \sim y) \] is the adjacency matrix of \(G \)

\[D(x, y) = d(x)\delta(x = y) \] is the degree matrix. \(D \) is diagonal.
Heat Equation

\(x, y \in V, \ t \geq 0.\)

\(K_t(x, y)\) is the temperature at \(x\) at time \(t\) when starting with a unit temperature at \(y\) at time 0.

\(K_0(x, y) = \delta(x = y)\) which in matrix notation is \(K_0 = Id\)

We define the heat equation for a fixed \(y \in V\) as:

\[
\forall x \in V, \ \forall t > 0, \ \frac{\partial}{\partial t} K_t(x, y) = HK_t(x, y)
\]

Notate \(u_t(x) = K_t(x, y)\)

\[
\frac{\partial}{\partial t} u_t(x) = \sum_{z \in V} H(x, z) u_t(z)
\]

\[
= \left(\sum_{z : z \sim x} u_t(z) \right) - d(x) u_t(x)
\]

\[
= d(x) \left(\left(\frac{1}{d(x)} \sum_{z : z \sim x} u_t(z) \right) - u_t(x) \right)
\]
Claims:
The heat equation admits a unique solution $K_t = e^{tH}$

\[e^{tH} = I + tH + \frac{t^2}{2!}H^2 + \frac{t^3}{3!}H^3 + \ldots \]

\[e^{tH} = \lim_{k \to +\infty} (I + \frac{t}{k}H)^k \]

Starting with a temperature $\pi(x)$, $x \in V$, the solution to the heat equation is $K_t\pi$
If for all x, $\pi(x) \geq 0$ and $\sum_{x \in V} \pi(x) = 1$ then for all $x \in V$ and all $t > 0$, $K_t\pi(x) > 0$ and $\sum_{x \in V} K_t\pi(x) = 1$
Markov Chain interpretation ...
Examples

- Complete graph with n vertices. $x \sim y \iff x \neq y$

 $$K_t(x, y) = \begin{cases}
 \frac{1}{n} (1 + (n - 1)e^{-nt}) & \text{if } x \neq y \\
 \frac{1}{n} (1 - e^{-nt}) & \text{if } x \neq y
 \end{cases}$$

- Vertices are binary strings of length n.
 $x \sim y \iff \text{Hamming}(x, y) = 1$

 $$K_t(x, y) = \frac{1}{2^n} (1 + e^{-2t})^n (\tanh(t))^{H(x, y)}$$

- Small graphs. Diagonalize H
Application to language modeling

Closed vocabulary V, $\#V = K \approx 10^5$

Training set of words x_1, \ldots, x_m, counts $n(w_1), \ldots, n(w_K)$

Want to build a probability mass function π over the words of V

i.e. $\pi(w_k) \geq 0$ and $\sum_{k=1}^{K} \pi(w_k) = 1$

From observed counts

$\pi_0(w_k) = m^{-1} n(w_k)$

Vertices $= V$,

- Choose the complete graph over V. $x \sim y \iff x \neq y$. Start at π_0

 Then ... for all $w \in V$, $K_t \pi(w) = (1 - \lambda(t))\pi_0(w) + \lambda(t)\frac{1}{K}$

- Choose $v \sim w \iff |n(v) - n(w)| \leq 1$, compute $(Id + \frac{t}{3}H)^3\pi_0$ with $t = \frac{1}{K}$ yields fast and competitive results.
Thank you