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Abstract

We consider a sequence of three models for skin detection
built from a large collection of labelled images. Each model
is a maximum entropy model with respect to constraints
concerning marginal distributions. Our models are nested.
The first model is well known from practitioners. Pixels are
considered as independent. The second model is a Hidden
Markov Model. It includes constraints that force smooth-
ness of the solution. The third model is a first order model.
The full color gradient is included. Parameter estimation as
well as optimization cannot be tackled without approxima-
tions. We use thoroughly Bethe tree approximation of the
pixel lattice. Within it , parameter estimation is eradicated
and the belief propagation algorithm permits to obtain ex-
act and fast solution for skin probability at pixel locations.
We then assess the performance on the Compaq database.

1. Introduction
1.1. Skin Detection
Skin detection consists in detecting human skin pixels from
an image. The system output is a binary image defined on
the same pixel grid as the input image.

Skin detection plays an important role in various appli-
cations such as face detection [13], searching and filtering
image content on the web [14][5]. Research has been per-
formed on the detection of human skin pixels in color im-
ages by use of various statistical color models. Some re-
searchers have used skin color models such as Gaussian ,
Gaussian mixture or histograms [12][10]. In most experi-
ments, skin pixels are acquired from a limited number of
people under a limited range of lighting conditions.

Unfortunately, the illumination conditions are often un-
known in an arbitrary image, so the variation in skin colors
is much less constrained in practice. This is particularly true
for web images captured under a wide variety of conditions.�
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However, given a large collection of labeled training pixels
including all human skin (Caucasians, Africans, Asians) we
can still model the distribution of skin and non-skin colors
in the color space. Recently Jones and Rehg [9] proposed
techniques for skin color detection by estimating the distri-
bution of skin and non-skin color in the color space using
labeled training data. The comparison of histogram models
and Gaussian mixture density models estimated with EM
algorithm was analyzed for the standard 24-bit RGB color
space. The histogram models were found to be slightly su-
perior to Gaussian mixture models in terms of skin pixel
classification performance for this color space.

A skin detection system is never perfect and different
users use different criteria for evaluation. General appear-
ance of the skin-zones detected, or other global criteria
might be important for further processing. For quantitative
evaluation, we will use false positives and detection rates.
False positive rate is the proportion of non-skin pixels clas-
sified as skin and detection rate is the proportion of skin
pixels classified as skin. The user might wish to combine
these two indicators his own way depending on the kind of
error he is more willing to afford. Hence we propose a sys-
tem where the output is not binary but a floating number
between zero and one, the larger the value, the larger the
belief for a skin pixel. The user can then apply a threshold
to obtain a binary image. Error rates for all possible thresh-
olding are summarized in the Receiver Operating Charac-
teristic (ROC) curve.

We have in our hands the publicly available Compaq
Database [9]. It is a catalog of almost twenty thousand im-
ages. Each of them is manually segmented such that the
skin pixels are labelled. Our goal is to infer a model from
this set of data in order to perform skin detection on new
images.

1.2. Methodology
Maximum Entropy Modeling (MaxEnt) is a method for in-
ferring models from a data set. See [7] for the underly-
ing philosophy. It works as follows: 1) choose relevant
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features 2) compute their histograms on the training set 3)
write down the maximum entropy model within the ones
that have the feature histograms as observed on the train-
ing set 4) estimate the parameters of the model 5) use the
model for classification. This plan has been successfully
completed for several tasks related to speech recognition
and language processing. See for example [1] and the ref-
erences therein. In these application the underlying graph
on which the model is defined is a line graph or even a tree
but in all cases it has no loops. When working with images,
the graph is the pixel lattice. It has indeed many loops. A
break through appeared with the work in [21] on texture
simulation where 1) 2) 3) 4) was performed for images and
5) replaced by simulation.

We adapt to skin detection as follows: in 1) we specialize
in colors for one pixel and two adjacent pixels given “skin-
ness”. In 2) we compute the histogram of these features
in the Compaq manually segmented database. Models for
3) are then easily obtained. In 4) we use the Beth tree ap-
proximation, see [16]. It consists in approximating locally
the pixel lattice by a tree. The parameters of the MaxEnt
models are then expressed analytically as functions of the
histograms of the features. This is a particularity of our fea-
tures. In 5) we pursue the approximation in 4): we use the
Belief Propagation algorithm, see [18], which is exact in
tree graph but only approximative in loopy graphs.

Indeed, one of us had already witnessed in a different
context that tree approximation to loopy graph might lead
to effective algorithms, see [6].

The main practical contribution of this paper is to pro-
pose a reasonably quick skin detection algorithm that out-
perform the standart method.

The rest of the paper is organized as follows: in section
2, we detail the features used and compute the associated
MaxEnt models. In section 3 we present the Bethe tree ap-
proximation and the related Belief Propagation algorithm.
Section 4 is devoted to experiments and comparisons with
alternative methods. Finally, the conclusion is in section 5.

2. Maximum Entropy Models
2.1. Notations
Let’s fix the notations. The set of pixels of an image is

�
.

The color of a pixel ��� � is ��� . It is a 3 dimensional vec-
tor, each component being coded on one octet. We notate	�
�����������������������

. The ”skinness” of a pixel s, is ��� with��� 
 � if s is a skin pixel and ��� 
! if not. The color
image, which is the vector of color pixels, is notated � and
the binary image made up of the � � ’s is notated � .

Let’s assume for a moment that we knew the joint proba-
bility distribution "$#%� � ��& of the vector #'� � �(& , then Bayesian
analysis tells us that, whatever cost function the user might
think of, all that is needed is the posterior distribution

"$#%��) �*& .
From the user’s point of view, the useful information is

contained in the one pixel marginal of the posterior, that
is, for each pixel, the quantity "$#'� � 
+� ) �*& , quantifying
the belief for skinness at pixel � . In practice the model"$#%� � �(& is unknown. Instead, we have the segmented Com-
paq Database. It is a collection of samples� #'�-,/.10 � �2,/.101& ��������� #'�-,4350 � �*,63501& �
where for each

�87:9;7:<
, � ,6=40 is a color image and � ,6=60

is the associated binary skinness image. We assume that
the samples are independent of each other with distribution"$#%� � �(& . The collection of samples is referred later as the
training data. Probabilities are estimated by using classical
empirical estimators and are denoted with the letter > .

In what follows, we build models for the probability dis-
tribution of the skinness image given the color image using
maximum entropy modeling.

2.2. Baseline Model
First, we build a model that respects the one pixel marginal
observed in the Compaq Database. That is, for each image� , consider the set of probability distributions over binary
images defined on the same grid as x that verify:?�@ #'�A&CBED-�F� �G� D*�A�H� 	I� D*���J� �E(���5��� "$#%����) �*��& 
 >�#%���5) �*��&
In this expression, the quantity on the right side is the pro-
portion of pixels with label � � , among the ones with color� � in the training data. For each � , The MaxEnt solution
under

? @ #%�*& , using Lagrange multipliers is the following
independent model:

"K#'�-) �*& 
:L��M�N >�#%���5) �*��& (1)

This model is the most commonly used model in the liter-
ature [12][10]. We will use it as a baseline for evaluating
subsequent models.

2.3. Hidden Markov Model (HMM)
The baseline model is certainly too loose and one might
hope to get better detection results by constraining it to a
model that takes into account the fact that skin zones are not
purely random but are made of large regions with regular
shapes. Hence, we fix the marginals of � for all the neigh-
boring pixels couples. We use 4-neighbors system for sim-
plicity in all that follows. For two neighboring pixels � andO
, the proportion of times that we observe #'� � 
QP*� �5R 
TS &

should be >�# P*��S & for
P;
U(���

and
SV
W����

, the correspond-
ing quantities measured on the training set. Hence let us
define the following constraints:X BED-�F� �Y� D O �[ZH#\�E& � D P � ������5��� D S � �E(���5�
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"K#'��� 
]P*� � R 
WS & 
 >�# P*��S &
where ZI#^�E& are the neighbors of � . For each image � , the
MaxEnt model under? . #'�A& 
_?`@ #'�A&-a X
is then the following Gibbs distribution [15].

"$#%��) �*&cb L��M�N >�#'�A�5) ����& Ld �fe RhgIi #%��� � � R & (2)

where the sum indexed by jW� � Olk ranges over all pairs of
neighbors pixels and i #%��� � � R & k  defines 4 parameters that
should be set up such that the constraints

X
are satisfied.

The sign b indicates here and after equality up to a function
that depends possibly on � but not on � . This function is
called the partition function in statistical mechanics.

2.4. First Order Model (FOM)

The baseline model was built in order to mimic the one
pixel marginal of the posterior, that is >�#%����) �A��& as observed
on the database. Then, in building the HMM model we
added constraints on the prior "K#'�(& in order to smooth the
model. Now, we constrain once more the MaxEnt model
by imposing the two-pixel marginal of the posterior, that is"$#'��� � � R ) �*� � � R & , for 4-neighbor � and

O
, to match those ob-

served in the training data. Hence we define for each image� , the following constraints:?�m #'�A&CBED��n� �Y� D O �[ZI#^�E& � D*� � � 	I� D*��Rc� 	I�
D*� � � �E(���5��� D*�5RY� ������5���

"$#'��� � � R ) �*� � � R & 
 >�#'��� � � R ) �A� � � R &
The quantity >�#'� � � ��Ro) � � � ��Rp& is the proportion of times

we observe the values #'� � � �5R1& for a couple of neighboring
pixels among the couples of neighboring pixels with color
values #'� � � �2Rp& , regardless of the orientation of the pixels �
and
O

in the training set.
Clearly, for each � , ?�m #'�*&rq ? . #%�*&sq ? @ #%�*& . Using

once more Lagrange multipliers, the solution to the MaxEnt
problem under

? m #%�*& is then the following Gibbs distribu-
tion: "$#%�-) �A&tb Ld ��e RhgIi #'� � � ��R � � � � ��Ru& (3)

where i #'�A� � � R � ��� � � R & k  are parameters that should be
set up to satisfy the constraints. Assuming that one color
can take

���5v��
values, the total number of parameters is���5v��Iw[���5v��Iwx�;w[�

.

2.5. Parameter Estimation

Parameter estimation in the context of MaxEnt is still an
active research subject, especially in situations where the
likelihood function cannot be computed for a given value
of the parameters. This is the case here, since the partition
function cannot be evaluated even for very small size im-
ages. One line of research consists in approximating the
model in order to obtain a formula where the partition func-
tion no longer appears: Pseudo-likelihood [2], [4] and mean
field methods [20], [3] are among them. Another possibility
is to use stochastic gradient as in [19]. However, due to the
large number of parameters in the FOM model, this is a real
challenge.

Moreover, recall that the quantities of interest for the
users are the one pixel marginal of the posterior, that is for
each � the quantity "K#'�(� 
y� ) �*& . These quantities for the
HMM model as well as for the FOM are not easily available
due once more to the impossibility of evaluating the parti-
tion function. One has then to use stochastic algorithm as
the Gibbs sampler which is time consuming or to rely on an
approximate model.

Bethe Tree approximation is a model approximation that
deals both with parameter estimation and fast computing of
the one pixel marginal of the posterior as we shall see now.

3. Bethe Tree approximation of Maxi-
mum Entropy Models

3.1. Maximum Entropy Models in Tree
Graphs

The FOM defined in (3) is a Markov Random Field on the
non-oriented pixel graph with 4-neighbor connectivity. Let
us assume for now that this graph was a tree: that is a con-
nected graph without loops. Then, the Maxent solution for
fixed � under

?hm #'�*& would be

"$#%��) �*&tb Ld �fe Rhg >�#'� �
� �2R�) � � � �5Ru&1>�#%� � � ��Ru&>�#'�A�5) ���o&1>�#'� R ) � R &p>�#'����&1>�#'� R & L��M�N >�#'�*��) ���o&p>�#'����&

(4)
The proof is as follows: we know from [11] that any pair-
wise MRF on a tree graph can be written

"$#%z`&tb Ld ��e Rhg >�#%z{�
� z R &>�#^z � &p>�#%z�Rp& L��M�N >�#%z{�o& (5)

where >�#%z{�o& is the one-site marginal of " and >�#%z5� � z R & is it’s
two-sites marginal.

Applying this result to z 
 #%� � �(& permits to obtain the
model in equation (4). By construction it is in

	Vm #'�*& . More-
over it has the same form as the one in equation (3) which
concludes the proof.
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Figure 1: Left: a Bethe tree of depth 1 rooted at � . Right:
a Bethe tree of depth 2 rooted at �

The main point to be made here is that the model in equa-
tion (4) is parameter free. This model will be referenced
later as TFOM for Tree First Order Model.

Still assuming that the graph is a tree, the MaxEnt model
under

	 . #'�*& can be derived from the one in equation (4)
by assuming conditional independence, that is, for each
couple j|� � O}k of neighboring pixels, >�#'��� � � R ) ��� � � R & 
>�#'�*��) ���o&p>�#'� R ) � R & , leading to

"$#%��) �*&cb Ld �fe Rhg >�#'���
� � R &>�#'����&1>�#'� R & L��M�N >�#%� � ) � � &p>�#'� � & (6)

As the model in (4), this one is parameter free. It will be
referenced later as THMM for Tree Hidden Markov Model.
Going further, and assuming that the prior is made of inde-
pendent and equally distributed components, one can derive
from equation (6) that the MaxEnt solution under

	C@ #'�A& for
tree graph coincides with the Baseline model for the image
lattice given in equation (1).

3.2. Bethe Tree Approximation
Bethe tree are named after the physicist H.A. Bethe who
used trees in statistical mechanics problems. They have
been introduced in computer vision as a way of approximat-
ing estimators in Markov Random Field models in [16]. We
shall revisit this work in connection with maximum entropy
models.

The key idea is to provide a tree that approximates lo-
cally the pixel lattice. More precisely, for each pixel � , we
consider a sequence of trees ~ �. � ~ �m ������� of increasing depth.
The construction is as follow: the root node of the tree is as-
sociated with � . For each neighbor

O
of � in the pixel-graph,

a child node indexed by
O

is add to the root node. This de-
fines ~ . . Subsequently, for each � , neighbor of a neighbor
of � , (excluding � itself), a grandchild node indexed by � is
added to the appropriate child node. This defines ~ m , and
so on, see [16] for a detailed account. An important remark
is that a single pixel might lead to several different nodes
in the tree! For example ~ �m is build with � , the neighbors
of � and the neighbors of theses. Using 4-neighbors , and
assuming that � is not in the border of the image, this makes
up 13 pixels, but the associated tree has 17 nodes, 4 pixels
being replicated twice each, see figure 1.

3.3. Belief Propagation Algorithm (BP)
Our aim is to compute for each pixel � , the quantity"$#%���{) �A� � �Q�|~(�5& , for " one the model above, and for �
ranging from 1 to say 5. This computation can be done ex-
actly. Moreover, it can be done efficiently using the Belief
Propagation Algorithm (BP). This algorithm has been dis-
covered in different scientific communities. It is called BP
in A.I., Viterbi algorithm in the special case of line graphs
and dynamic programming in combinatorial optimization.
See [18] and the references therein for a detailed account.

For the generic pairwise model

"$#'�-) �*&tb Ld ��e RhgH� #'�A� � � R � ��� � � R & L��M�N�� #%�*� � ���o& (7)

The BP algorithms consists in computing � times :� R �E#%����&t���'�o� � #'� R � � R & � #'�A� � � R � ��� � � R & L� M�� , R 0 e ���� �
� � R #'� R &

(8)
where ZI# O & are the neighbors of

O
. The quantities � � R are

interpreted as a message coming from
O

to � and are initial-
ized with the value one. We then obtain:

"$#%��� 
�� ) �*� � �n�[~ �� &tb � #'�*� � ���o& LR M�� , � 0
� R �E#'����& (9)

4. Experiments
All experiments are made using the following protocol. The
Compaq database contains about 18,696 photographs. It is
split into two almost equal parts randomly. The first part,
containing nearly 2 billion pixels is used as training data
while the other one, the test set, is left aside for ROC curve
computation.

4.1. Baseline Model
The key ingredients of the Baseline model in (1) are the two
3-dimension histograms, >�#'����) ��� 
�� & and >�#'�A�5) ��� 
y &
describing the distribution of the color of a pixel for skin
regions and non-skin regions respectively. We used for each
histogram � ��� bins. Each bin made of � � color values.

Figure 2, Top Left is one of the test images. It is a
large color image of

v � ��w��(��� pixels. Top right is a grey
level image. The grey-level is proportional to the quantity"$#%��� 
�� ) �*& evaluated with the Baseline model. Many non-
skin pixels are detected. Figure 3 shows ROC curves com-
puted from 100 images (more than 10 millions pixels), ran-
domly extracted from the test set. The Baseline model (with
crosses) permit to detect

v����
of the skin pixels with

���
of

false positive rate. All the experiments are performed on
a PC with a Pentium 4 processor at 1.7 Ghz and 256 MB
memory. The execution time is given for a 1000x1000 pixel
image. It is 0.9 seconds for the baseline model.
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4.2. THMM Model

Result for the THMM model in (6) and one iteration of the
BP algorithm is presented for a single image in figure 2.
The grey level is, as before, proportional to the belief for
skin at pixel locations. We remark that the beliefs are al-
most binary. Bulk results are in figure 3 showing uniform
improvement over the baseline model. We report an in-
crease of � � , from

v����
(baseline model) to � ��� (THMM

model) of the detection rate for the same false positive rate.
This is measured over a test set of more than 10 millions
pixels not intersecting the training set. The standard Nor-
mal test for proportions indicates that under the baseline
model, the

�����
confidence interval for the detection rate is� v��(� �5�`����v��(� �v`���

. The value of � ��� found for the THMM
model is statistically significant. In [8], we estimated the pa-
rameters of the HMM model using a simulation technique
borrowed from [17]. We showed that the resulting model
was indeed very close to the THMM model. Moreover,
when using a Gibbs sampler to estimate the probability for
skin at pixel locations, we obtained comparable results with
the ones reported here, but with a running time increased
by a factor of more than ten. The execution time for the
THMM is 14.2 seconds to be compared with 0.9 seconds
for the baseline model.

4.3. TFOM Model

The TFOM model in (4) cannot be used as it is. Indeed, the
quantities >�#'� � � ��R�) � � � �5Ru& cannot be directly extracted from
the database without drastic over-fitting. In effect the four
histogram involved have a support of dimension six, three
dimensions for each pixel. Hence, some kind of dimension
reduction is needed. We have experimented the following:

>�#'�A� � � R ) ��� � � R &��_>�#%�*��) ���o&p>�#'� RK� �*��) ��� � � R & (10)

That is, we assume that the color gradient at � , measured by
the quantity �2R � � � , is, given the labels at � and

O
, indepen-

dent of the actual color � � . Evaluation of the right side of
the sign � requires to compute 6 histograms with a support
of dimension 3. We use � ��� bins of 32 colors each.

Result for this model with one iteration of the BP al-
gorithm is presented for a single image in figure 2. Bulk
results are in figure 3 showing slight but uniform improve-
ment over the THMM model. For example, the TFOM
model (with squares) permit to detect � ��� of the skin pixels
with
���

of false positive rate. Computational time is 14.4
seconds for a 1000x1000 image which is about the same
as for the THMM model. Increasing the number of itera-
tions didn’t increase significantly the overall performances.
Moreover, using the Gibbs sampler or Mean Field approx-
imation didn’t improve the results. Detailed experiments
will be presented elsewhere.

Figure 2: Top left: original color image. Top right: result
for the Baseline model. Bottom left: result for the THMM
model. Bottom right: result for the TFOM model

An alternative to the approximation in (10) is the follow-
ing: >�#'�*� � � R ) ��� � � R &>�#%� � ) � � &1>�#%��R�) �5R1& � >�#%z{�

� z R ) ��� � � R &>�#^z � ) � � &1>�#%z�R�) �5R1& (11)

where z5� and z R are the grey level at � and
O
. The joint distri-

bution of colors is replaced by the more tractable joint dis-
tribution of grey levels. However, the resulting ROC curve
is not as good as the one using the approximation in (10)
showing that the color gradient for skin might indeed con-
tain useful features.

5. Summary and Conclusions
From the practical point of view, we have derived several
algorithm for skin detection that perform uniformly better
than the wide spread color model referred here as the Base-
line model. The computational time is increased by about a
factor ten.

Moreover, we have shown that the nowadays popular
Maximum Entropy Modeling method can lead to an effi-
cient algorithm for a supervised image segmentation prob-
lem. We have used extensively the Bethe Tree method that
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Figure 3: Receiver Operating Characteristics (ROC) curve
for each model. x-axis is the false positive rate, y-axis is
the detection rate which is the complement to one of the
false negative rate. Baseline model is shown with crosses,
THMM with triangles, while TFOM is shown with squares.

consists in approximating locally the loopy pixel lattice by
a tree graph. The natural algorithm for assessing probability
for skin at pixel locations in this context is the Belief Propa-
gation algorithm. Experimental results have shown that it is
much faster than a stochastic sampling scheme as the Gibbs
sampler. It compares also favorably in term of performance
with the Mean Field Approximation Method.

If asymptotic properties of the Beth tree approximations,
i.e. letting the depth of the tree tend to infinity are related
to a well known approximation in statistical physics, [18],
we have witnessed in practice that large tree models do not
seem efficient.
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