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Abstract. In medical imaging, finding landmarks that provide biol@gig mean-

ingful correspondences is often a challenging and timesaaring manual task.
In this paper we propose a generic and simple algorithm fedrfearking non-

cortical brain structures automatically. We use a prolghilmodel of the image
intensities based on the deformation of a tissue probgliiap, learned from a
training set of hand-landmarked images. In this settingnading the location of
the landmarks in a new image is equivalent to finding, by ilil@d maximiza-

tion, the "best” deformation from the tissue probability prt@ the image. The
resulting algorithm is able to handle arbitrary types anthbers of landmarks.
We demonstrate our algorithm on the detection of 3 landmeifrkise hippocam-

pus in brain MR images.

1 Introduction

Anatomical landmarks are well-defined points in the anattimyexperts use to estab-
lish biologically meaningful correspondences betweencstires[[1]. Such correspon-
dences are commonly used by registration algorithms, &alimation and/or as con-
straints[Z,8,4]. Landmarks also provide a local shaperg#sm useful for anatomical
shape comparisohl[5].

However, locating landmarks on biological structures ishallenging and time-
consuming task, even for experts. This has motivated theldpment of several meth-
ods for automatic landmarking. Previously proposed methg# either 3D filters to
detect, for example, high curvature points and cornerseérirttage([6], or a geometric
model of the image intensities to detect, for example, thetia structurel[[r}8]. Both
techniques rely on local intensity variations, but someliaarks are not detectable us-
ing only intensity information. This is the case of the he&the hippocampus whose
intensity is similar to the surrounding amygdala. Noticgoahat these techniques are
designed for the detection of independent landmarks. Thegat integrate information
from the previous detections, although it should be helf@fiknow, for example, the
location of the head of the hippocampus to locate its tail.
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In this paper, we propose a probabilistic apprﬂaohandmark brain structures such
as the hippocampus, on which one needs to locate the headjlthad the extremity
of the hippocampal uncus. We identify the location of thallaarks in an image with a
unique deformation of the underlying 3D space. The set afmedtions considered in
this paper is a set of Gaussian interpolating splines wieréahdmarks act as control
points. We then build a probabilistic model for an imageegithe landmark locations.
The estimation of the model parameters consists of leamilogal tissue probability
map, using a training set of hand-landmarked images. In neageés, landmarks are
identified using a gradient ascent algorithm on the likedithéunction.

The resulting algorithm is generic and specializes autmalit to the structure
or region of interest during the learning of the tissue philitg map. Therefore the
algorithm is able to specialize to arbitrary types and numbélandmarks.

In sectio 2, we describe the generative model of the imagasities. In section
B, we show how to estimate the parameters of this model, divoduthe photometric
parameters of the tissue types and the local tissue prdtyambiap. In sectioll4, we
show how the likelihood function can be maximized to estamidte position of the
landmarks in a new image. Finally, in sectidn 5, we test théhowon the simultaneous
detection of 3 landmarks of the hippocampus.

2 Generative model of theimageintensities

In this section, we describe the generative model of thasities of image, X (V. Let
L*= (L}, - ,Li)andL = (Ly,--- , Lk), be two sets o landmarks irR? and¢ :
R3 — R? a small deformation such that{ L*) = L. Since many deformations verify
this condition, we restrict the set of deformations to a Gaursspline interpolation
of the landmarks displacements, see equalibn (3). We fixalatd configuratiord.”,
the center of mass of landmark locations in the trainingldence finding the position
of the landmarkd. is equivalent to estimating the "best” deformation frditi to L.
By the Bayes' formula the joint distribution becomB$X ¥ ¢) = P(X¥|¢)P(4).
We choose a uniform prior so that maximizing the joint digition is equivalent to
maximizing the conditional distributiof? (X |¢).

We make the simplifying assumption that the voxel inteasiéire independent given
the transformationp. That is, P(X (V]¢) = [Toev P(Xﬁi) = z|¢), with X the
intensity at voxeb inimagei andV the set of voxels in the image. The image intensities
are modeled with a mixture of 6 gaussian distributions,egponding to the following
tissues: CSF, CSF+GM, GM, GM+WM, WM and skull+blood vess®@s denote by
Z,, the discrete random variable representing the tissue tyyexal v. We assume that
the intensityXéi), given the tissue typg, is independent of the deformation and write
the conditional probability of théth image given the deformation as

6
P(XWg) = [T 3 P(x) = a1z, = j)P(Z, = jlo). &)

veV j=1

4 |n [BI0], probabilistic models of the image intensitievdalso been proposed to segment
and register brain MRI.
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Fig. 1. To generate a new image  (rightmost): draw a random segmentation (leftmost) based
on the distribution of the tissue probability map; apply adam deformatiorp to find the new
image segmentatiof ;1) (middle) and assign an intensity chosen with the correspgr@aus-
sian distribution.

The first term characterizes the photometry of each tisstieirmage, while the second
term encodes the geometry. It gives the probability of obegreach tissue type at each
location in the brain. Figurd 1 illustrate the generativedelo

Let 3 be the parameters of the transformatianthe estimation of the landmark
position in a new image i& = ¢;(L") with 3 = arg maxsIn P(X|¢s). We denote
byT = {P(Z; = j),1 < j <6}, the tissue probability map, i.e. the probability of
observing tissug at each voxel. Algorithrhl1 summarizes the algorithm for engitic
landmarking which will be described in detail in the followji sections.

Algorithm 1 : Automatic Landmarking

Learning step
Given N training images withK landmarksL; = (L1, , Li,x),1 <i < N:
1. Identify the standard configuratio* = + >V | L;,
2. Learn the photometry parameters;_; andaf’j for each tissue typg¢ and image,
3. Register the images of the training set:
(a) for each image, find the uniquepg,, such thatys, (L*) = L,
(b) for eacht in the probability map, extract the intensitieg;i ®) foralli, 1 <i <N,
4, Estimate the tissue probability map: '
for each ¢ in the probability map, estimate the proportions of eactsuss in

(1) (N) i i
(x%l (W e (1)) using the EM algorithm.

For anew image
1. Learn the photometry parameters; andaf for each tissue typg,
2. Estimate the transformation and predict the landmark laoat
(a) Maximize the likelihood with respect tdusing a gradient method,A
(b) Compute the transformatiaty and the predicted landmark locatidn= ¢5(L").




3 Estimation of the model parameters

In this section, we show how to estimate the parameters optbkeabilistic model.
Since the photometry and the geometry are assumed to beecindept in our model,
we can estimate the photometric parameters and the tisebalglity map separately.
Let us start with the photometry.

3.1 Learningthe photometric parameters

The intensity of an imag&X () is modeled as a mixture of Gaussian distributions, as-
suming independence of the voxels, as it is commonly dongeiature [11]. Thus,

6
P(X(l)) = H Zgi,j('rgji))ai,j, with 9i.j NN(/Li_’j,Gi_’j) andzam- =1. (2)

veV j=1 J

Given the segmentation, it would be straightforward toneate the parameters of
the model. However, here the segmentation is unknown, aésase the Expectation-
Maximization (EM) algorithm[[12] to maximizé P(X(i)) with respect tqu; ;, aij,
anda; ;, 1 < j < 6. In the case of a Gaussian mixture, both the E-step and thieM-s
can be written in closed form and convergence to a local maxirof the likelihood

function is guaranteed.

3.2 Learning thetissue probability map

The standard atlas for registration in neuroimaging is thidfalairach and Tournoux,
[2]. Tissue probability maps have been estimated based agemaligned by linear
transformation to that atlas [113]. In the problem we consitie images are already
manually transformed into Talairach space but we try to cedhe residual variabil-

ity (we note variability of 20mm for the head of the hippocamj14]). Also we use

the correspondences of the landmarks of the training setpoave the quality of the

alignment of the structure of interest and consequentlynl@alocally more precise
probability map. The estimation of the tissue probabilitgpris obtained as follows:
first, register the training images so that the landmarkatitae same location in all the
images and then estimate the proportions of each tissueatygsech location.

Registration of thetraining set: Since the images have been previously aligned by a
linear transformation, we deal only with small deformatioMore specifically we use
a spline interpolatios based on the landmark matching constraint.

K
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where 3, € R? is the displacement vector at the landmdrk ando;, € R is the
smoothing parameter. This type of deformation has a simpédytcal form, easy to



generalize to more landmarks. It also has a simple inteapioet and an almost local
support so that computation will be easier. Registeringhi@aing images consists of
finding the unique transformatiafy that transforms the landmarks of the tissue prob-
ability map to those of the image, i.3(L*) = L. The choice of the smoothing
parameters;, is done manually, so that we ensure the invertibility of teéodmation.
These parameters could also be learned during the traimiagep Oncer;, are fixed,
registering one training image is equivalent to solvingddhe linear system given by
the landmark matching constraints. Other deformation&idmeiused to register the im-
ages which in addition to satisfying the landmark matchimgstraints, either minimize
the bending energy (Thin-Plate Splines) or ensure inviétfiliGeodesic Interpolating
Splines) [15], at some computational cost.

Estimation of the probability tissuemap: The registration of the training set provides

; i ; 1 (N) (1)
us a vector of intensities at each locatioa T, (:c% OURRERE (t)), wherex%(t)

is the gray level of the imagé 1 < ¢ < N, at the locationgg, (t). Learning the
geometry consists of estimating the proportion of eaclu¢igype; at each location
t of the probability map, based on these observations. Siattethe tissue types (we
observe only the gray level) and their distribution are wvm, we need to use once
more the EM-algorithm to estimate the proportions of thetarex. The EM algorithm
maximizes the following quantity with respecti(Z; = j):

() 1) = 1)’

N 6 .
P(Z; =j)
1 et = J) _
; ny =" exp -

j=1 27T0ij 4,7
,

(4)

We use the photometric parametéss ;, oﬁj) estimated previously on each one of the
images of the training set. Figuté 2 shows one sagittal sifdbe tissue probability
map. Notice that the anatomy is sharply described by thedipsobability map in the
vicinity of the landmarks while it is more diffuse at longesihnces.

4 Landmark detection on a new image

Consider a new imagér, ),cv. Since the likelihood of the intensities is a function
of 4, the deformation parameters, we look for the deformatigrthat maximizes the

conditional likelihood (). That is,3 = arg maxg [(3) with

6
10B8) =YY gi(x)P(Zy-1() = J). (5)
veV  g=1
The estimated landmark location is simply givenby= %(L*).

Howevergsg1 cannot be expressed in a simple analytic form, so we makétrege
of variablesy = ¢3(t). The likelihood becomes,

6

(B) =Y ) gi(ws,)P(Z =)o, (1), (6)

tegg (V) I=1



Fig. 2. Tissue probability map obtained when the deformation isreged on three landmarks:
HoH the head of the Hippocampus, HT the hippocampus tail ahdthe posterior apex of the
hippocampal uncus. The slice corresponds to the sagittdbeecontaining HoH, HT. UA is
represented on the same slice although it lies in the nextalagjice. We represent the 5 main
tissues of the brain (the sixth one is not present in thisoregf the image). White regions have a
high probability to belong to the corresponding tissue. figletmost bottom image is an example
of a registered image of the training set.

with |J,,(t)| the absolute value of the determinant of the Jacobian of hlaege of
variable. We approximate it by computing the quantity ontiksue probability map
supportT’ instead oqugl(V). In addition, since the support of the deformatipnis
almost local, the computation can be reduced to the poiotgwathe landmarks, saving
memory usage and time.

The derivative of the likelihood with respect fbcan be computed exactly. The
likelihood is maximized by simple gradient ascenRiff*. Conjugate gradient method
did not improve the experimental results.

5 Experiments. landmarking the hippocampusin brain MRI

The training set is composed of 38 T1-weighted MR brain insagegjuired on a Philips-
Intera 3-Tesla scanner, with resolution 1fhrBrains were first manually transformed
into standardized Talairach space using Analysis of FanatiNeuroimages (AFNI)
to provide a canonical orientation (anterior and poster@mnmissures (AC and PC)
made co-linear) and approximate alignment. All the image®lthe same size after the
transformation161 x 191 x 151 voxels. An expert located the apex of the Head of the
Hippocampus (HoH) and define on the same sagittal slice tiheffihe Hippocampus
(HT) and he located the posterior apex of the hippocampalsi(idA). (see FigurEl2
bottom right)



We apply AlgorithnTl to predict simultaneously the locatwfiHoH, HT and UA
in the training set and in the testing set, composed of 9 imagquired in the same
experimental setting as the training set and transformedlmlairach space. We exper-
imented with different values af but the results were comparable. We present in more
details the casey, g = oy = opya = 5.

After learning the model as described in secfibn 2, we estirttee transformation
parameterg} € R for each image independently. We assess the quality of e pr
diction by computing the Euclidean distance between the kandmarksL and the
estimated positior.. The hand-landmarking procedure defines HoH and HT so that
they lie on the same sagittal slice. This is enforced in thénopation algorithm by
expressing the constraints gnFor computational efficiency, we restrict the domain of
computation to the set of voxels in the probability map witBi of each landmarks,
since the gradient will be null at further distance of thediamarks. Tabl€]1l presents
the mean error over the images of the training and the testgFor comparison,

Table 1. Mean prediction error in mm obtained by automatic landrragfor HoH, HT
and UA on the training set (38 images) and on the testing setgges).

mean error (mm) on the training s@iean error (mm) on the testing set
HoH 2.27 (1.58) 2.96 (1.17)
HT 2.49 (1.25) 2.57 (1.20)
UA 2.20 (1.30) 2.78 (1.59)

the specialist’s intra-variability for HoH is 1.22m(@ = 0.92), while the non-expert
intra-variability on the same images for the same landmar&.58mm(c = 0.98).
The resulting inter-observer variability for HoH is 3.26nim= 0.98). The algorithm
reaches performance comparable to the inter-observaebildy and offers for most
of the images a reliable prediction of the landmark position

Since locating landmarks in the image is aimed at reduciaddbal variability of
the alignment, we compute the average gray-level acrosshges of the testing set
and compare the initial alignment to the alignment afteistegtion, using the automatic
landmarks or the manual landmarks. For this experiment,seethe same registration
technique as in sectidnB.2. Figlile 3 presents the resuits.imiprovement between
(a) and (b) are concentrated around the landmarks. AroundtépFright cross) the
average location of the tail is more consistent and accubate in (a). The head of
the hippocampus (bottom-left cross) is visible in (b) wliiles not in (a). The overall
alignment of the hippocampus is better in (b) than in (a).

6 Conclusion

We have proposed a simple and generic algorithm for autogp#tie detection of land-
marks on anatomical structures of the brain. The algoritehorigs to the class of gen-
erative models using a training set of manually locateddaautks to specialize to the
structure or region of interest. It adapts easily to variousbers and types of anatom-
ical landmarks. Experimental results on brain MRI for laegtthree landmarks in the
hippocampus are promising with an error comparable to thiahitity between land-
markers.
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Fig. 3. Alignment experiment results on the testing set compos@dmfges initially aligned in
the Talairach space. (a) represents the initial alignméitfiowt using landmarks, (b) represents
the alignment obtained when the registration is made usie¢andmarks detected automatically,
(c) alignment based on the expert’s landmarks. The crospessent HoH, HT and the projection
of UA as it lies in the next sagittal slice.
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