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ABSTRACT

We present a simple and elegant method to incorporate user
input in a template-based segmentation method for diseased
organs. The user provides a partial segmentation of the or-
gan of interest, which is used to guide the template towards
its target. The user also highlights some elements of the
background that should be excluded from the final segmen-
tation. We derive by likelihood maximization a registration
algorithm from a simple statistical image model in which the
user labels are modeled as Bernoulli random variables. The
resulting registration algorithm minimizes the sum of square
differences between the binary template and the user labels,
while preventing the template from shrinking, and penaliz-
ing for the inclusion of background elements into the final
segmentation. We assess the performance of the proposed
algorithm on synthetic images in which the amount of user
annotation is controlled. We demonstrate our algorithm on
the segmentation of the lungs of Mycobacterium tuberculosis
infected mice from µCT images.

Index Terms— Registration - Template-based Segmenta-
tion - User Input - Diseased Organs

1. INTRODUCTION

Intensity-based segmentation techniques usually fail at seg-
menting diseased organs due to the presence of lesions.
Template registration techniques are commonly employed
to overcome this difficulty and produce a segmentation un-
der some shape constraints. Template-based segmentation
is omnipresent in medical imaging. It usually relies on a
trade-off between the similarity of the target image and the
deformed template, and the amount of deformation. The
segmentation result is generally reviewed by the user. If it
is not satisfactory, the user needs to modify the parameters
of the registration algorithm in the hope of improving the
final segmentation. It can take several iterations to tune the
parameters adequately to the task on hand. It would be easier
for the user to highlight regions that have been missed in the
segmentation than finding the subtle trade-off between de-
formation and similarity. Unfortunately template registration
algorithms do not generally take user input into account.

In this paper, we present a simple method to elegantly in-
corporate user input in a template-based segmentation tech-
nique for the segmentation of diseased organs. The user pro-
vides a partial segmentation - also called positive segmenta-
tion - of the organ of interest. It will be used to match the
template onto the target organ. The user also highlights in
what we call the negative segmentation, parts of the image
that should be excluded from the final segmentation. Since
user input is by essence incomplete, the registration algorithm
needs to be robust to missing data. We have presented in
[1] a simple statistical image model from which we derived
a registration algorithm that deals with missing data. This
work builds onto the same principles to deal with missing data
while taking advantage of the user input.

We demonstrate our segmentation algorithm in the con-
text of inflammation imaging with combined µCT and FDG-
PET of M. tuberculosis infected mice. The task consists of
delineating the lungs from the CT images in the presence of
lesions so that the PET activity level in the lungs may be an-
alyzed at different time points [2]. In this particular applica-
tion, the user provides parts of the diseased lungs as positive
segmentation and the rib cage and spine as negative segmen-
tation. We first test the algorithm on controlled experiments
to assess its robustness to missing data and its ability to ex-
clude the negative segmentation from the final segmentation.
We present lung segmentation results on µCT images of M.
tuberculosis infected mice.

2. TEMPLATE REGISTRATION WITH USER INPUT

2.1. User Input: Positive and Negative Segmentation

We denote by I : R3 → R an intensity image and by I0 :
R3 → {0, 1} a binary template that contains a template shape
of the organ of interest. The positive segmentation, denoted
I+ : R3 → {0, 1}, is a binary image containing parts of the
target organ. We make the assumption that the positive seg-
mentation contains only few errors, i.e. voxels that do not
belong to the target organ are not included in the positive seg-
mentation. However, we tolerate that parts of the diseased
organ may be missing. In this work, we assume that the user
provides the positive segmentation. While it is generally time



consuming and challenging to provide a complete segmenta-
tion, it is significantly easier to produce a partial segmentation
of an organ of interest, even when lesions are present.

In addition, the user may provide a negative segmenta-
tion, denoted I− : R3 → {0, 1}. It is a binary image, defined
on the target image domain, which contains some of the sur-
rounding anatomical structures that should be excluded from
the final segmentation. For instance it is frequent that parts
of the rib cage and the spine are mistakenly included into
the lung volume segmentation. By assigning the surround-
ing bones to the negative segmentation, the user ensures that
those structures will be excluded from the final segmentation.
Figure 1 presents an example of user input for the segmenta-
tion of mouse lungs from CT images.

2.2. Template Registration by Energy Minimization

Like many template registration algorithms, the proposed
method is formulated as an energy minimization problem.
The template, denoted by I0, is deformed by φ, a smooth
deformation from R3 to R3. The target is composed of two
non-overlapping binary fields: I+ , the positive segmentation,
and I−, the negative segmentation. The energy function is
composed of two terms,

R(φ) + γA ({I+, I−}, I0, φ) , (1)

with γ ∈ R, a weighting factor. The data term, A, measures
the similarity between the deformed template, I0 ◦ φ−1, and
the target, {I+, I−}, while the regularization term, R, penal-
izes for non-smooth deformations.

2.3. Deriving the Data Attachment Term

Rather than designing the registration data term arbitrarily, we
design a simple generative model and use the negative log-
likelihood of the observed target image as similarity measure,
as proposed in [3].

2.3.1. Statistical Model

We model each voxel of each target field (I+, I−) as a ran-
dom variable that follows a Bernoulli distribution, whose pa-
rameter depends on the voxel location and the value of the
corresponding voxel in the template. For instance, assuming
that φ is the deformation that brings the template and the tar-
get into correspondence, if a voxel of the template domain
y = φ−1(x) belongs to the template lung, i.e. I0(y) = 1, the
corresponding voxel x in the target image should belong to
the positive segmentation, i.e. I+(x) = 1, unless it belongs
to a lesion that was not included in the positive segmentation,
i.e. I+(x) = 0. Hence:

P (I+(x) = 1|I0(y) = 1) = 1− δ+, (2)

where δ+ ∈ [0, 1] represents the proportion of lesions not
included in the positive segmentation. If the template and
the target are aligned, the probability that voxel x belongs to
the negative segmentation is low. Denoting ε a small positive
quantity:

P (I−(x) = 1|I0(y) = 1) = ε. (3)

Similarly, if a voxel of the template image does not belong to
the organ of interest, i.e. I0(x) = 0, it is unlikely that the
corresponding target voxel x = φ(y) belongs to the organ to
be segmented, i.e. I+(x) = 1, hence:

P (I+(x) = 1|I0(y) = 0) = ε. (4)

However, voxel x may belong to the negative segmentation:

P (I−(x) = 1|I0(y) = 0) = 1− δ−, (5)

with 1 − δ− the proportion of voxels of the target image that
belong to the negative segmentation among all the voxels that
do not belong to the positive segmentation.

2.3.2. Likelihood Expression

We model the labels in the positive and negative segmen-
tations given the registering deformation φ as condition-
ally independent random variables, {I+(x), I−(x)}, when
x belongs to the domain of the target image. We denote
y = φ−1(x), the location in the template domain that corre-
sponds to location x in the target domain. The different fields
of the target image are assumed to be independent with no
intersection. Therefore the contribution of each voxel to the
log-likelihood is a sum of 8 terms corresponding to each pos-
sible event: (I+(x) = 1|I0(y) = 1), (I+(x) = 1|I0(y) = 0),
(I−(x) = 1|I0(y) = 1), (I−(x) = 1|I0(y) = 0) and the 4
complementary events. Each term of the sum is weighted by
the associated log-probability. Summing over all the voxels
of the image and neglecting the terms that do not depend on
φ, the log-likelihood can be written as:

`({I+, I−};φ) (6)

=
∑
x
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ε
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Since I0 and I+ are binary, we use the fact that: (I0(y) −
I+(x))

2 = I0(y) + I+(x) − 2I0(y)I+(x) and rewrite (6) so
that the sum of squared difference is apparent:
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Fig. 1. Left Column: User Input - Axial view
of the Positive Segmentation (Green) and Negative
Segmentation (Blue) obtained by intensity thresh-
olding and connected component on 2 examples of
CT scans of TB infected mice. Center and Right
Columns: Segmentation Results - Each image
represents an axial slice of the CT image registered
onto the template lungs using SSD+MP (center),
the algorithm presented in [1] or SSD+UI (right)
the proposed algorithm. The red contour delin-
eates the segmentation volume. The red arrows
point towards bones that are included in the lung
segmentation after registration by SSD+MP but not
after registration by SSD+UI. Note that in regions
with fewer user annotations the segmentation is less
precise.

The log-likelihood is composed of 3 terms: the usual sum of
squared differences and two corrective terms. The first cor-
rective term measures the volume of the deformed template
and penalizes for shrinking excessively the template. The
second corrective term penalizes deformations that lead the
deformed template to intersect with the negative segmenta-
tion. The log-likelihood is therefore maximized when the de-
formed template includes the positive segmentation without
shrinking excessively, and avoids the negative segmentation.

2.4. Registration Algorithm

The deformation is modeled by the evolution of a smooth ve-
locity vector field, such that the template shape is deformed
into the target shape. The solution of the evolution equation,
so-called EPDiff, is unique and generates a diffeomorphism
uniquely characterized by the initial momentum, the velocity
vector field at time 0. Plugging in the negative log-likelihood
(7) in the energy function (1) we obtain:

‖w‖2V + λ

∫ (
I0(φ

−1(x))− I(x)
)2
dx (8)

+ λ1

∫
I0(φ

−1(x))dx+ λ2

∫
I0(φ

−1(x))I−(x)dx, (9)

with

λ = γ log
(1− ε)
ε

(1− δ+)
δ+

,

λ1 = −γ log δ+(1− δ+)
δ2−

1− ε
ε

, λ2 = 2γ log
1− ε
ε

1− δ−
δ−

,

and ‖w‖V the norm of the initial momentum in some ade-
quate Hilbert space V . If there is no negative segmentation,
i.e. δ− = 1 − ε, λ2 = 0, the registration algorithm is equiv-
alent to the method proposed in [1]. If in addition the posi-
tive segmentation includes the complete organ of interest, i.e.

δ+ = 1 − δ− = ε, the data term boils down to the usual
SSD. More details about the minimization algorithm can be
found in [4] in the latter case. The general case comes as a
straightforward modification.

2.5. Choice of the Model Parameters

The matching algorithm depends on the choice of 4 parame-
ters: ε, δ+, δ−, and γ. ε is a small positive quantity that repre-
sents the probability of the unlikely events. It is set manually
by the user, in the following experiments ε is set to 10−10. ε
indirectly controls the weight of the penalization terms in the
registration algorithm. The smaller ε is, the larger the penal-
ization for shrinking the template and for intersecting with the
negative segmentation.

Both δ+ and δ− are related to the user input. Assuming
that the organ of interest has the same volume as the tem-
plate, δ+ is estimated as the ratio of the volume of the positive
segmentation over the volume of the template organ. As for
1− δ−, it is estimated as the ratio of the volume of the nega-
tive segmentation over the volume of the target image minus
the volume of the positive segmentation.

Finally, we determine the value of γ when δ+ = 1−δ− =
ε, i.e. when λ1 = λ2 = 0, which corresponds to the user
providing a complete segmentation of the organ of interest
and no negative segmentation. We determine that λ = λ0 =
6 · 104 produces satisfying segmentation of the complete lung
volumes (c.f. 3.1.1), hence:

γ =
λ0
2

(
log

1− ε
ε

)−1

, (10)

from which λ, λ1 and λ2 can be computed.
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Fig. 2. Segmentation error for different amounts of lesions
after registration using either the usual sum of squared differ-
ences (SSD), or the data attachment term dealing with missing
data (SSD+MP), or the proposed algorithm that takes user in-
put into account (SSD+UI). For instance SSD+UI-25 stands
for experiments with 25% of missing data using SSD+UI.

3. EXPERIMENTS

3.1. Controlled Experiments
3.1.1. Image Data and Generation of Synthetic Data

A group of mice is infected and imaged by CT at a resolu-
tion of .2x.2x.2mm at different stages of infection. Unin-
fected mice are also imaged at each time point. We extract
the lungs from the CT scans of two uninfected animals us-
ing intensity thresholding and connected components. In the
following experiments, one of the lung volumes is used as a
template, while the other volume is used as a target.

We randomly generate targets with missing data. Between
25 and 90% of the segmented volume is removed by sampling
random spheres of 10 voxels of diameter. We segment by in-
tensity thresholding the rib cage and spinal cord in the target
image to be used as negative segmentation. We use the pro-
posed algorithm (SSD+UI) to segment the target and compare
the result to the results of other algorithms, see Figure 2.

3.1.2. Performance Assessment

The segmentation results are assessed using the Dice coeffi-
cient [5]. DT denotes the deformed template and T the com-
plete target. T is partitioned into the lesions L and the positive
segmentation PS. As for T, it is partitioned into the negative
segmentation NS and the background B. The segmentation
error, 1− Dice(DT,T) is a sum of 4 terms:

|DT ∩ NS|
|DT|+ |T|

+
|DT ∩ B|
|DT|+ |T|

+
|DT ∩ L|
|DT|+ |T|

+
|DT ∩ PS|
|DT|+ |T|

(11)

The first 2 terms of (11) measure the set of voxels falsely in-
cluded into the segmentation, which is partitioned into the

controlled overgrowth |DT∩NS| and the residual overgrowth
|DT ∩ B|. SSD+UI is designed to limit the controlled over-
growth. The 3rd term, called missed lesions, accounts for the
lesions that are not included in the final segmentation. The 4th
term, called missed target, accounts for the voxels included in
the positive segmentation but not in the final segmentation.

Figure 2 presents the 4 components of the error for dif-
ferent amounts of missing data and for different registration
algorithms. Both SSD+UI and SSD+MP successfully con-
trol the segmentation error when the amount of missing data
increases1. In addition we observe that in all cases SSD+UI
eliminates the intersection between the deformed template
and the negative segmentation. It shows that the SSD+UI is
able to incorporate user input to modify the segmentation.

3.2. Segmentation of M. Tuberculosis Infected Lungs

Figure 1 shows preliminary results on the segmentation of in-
fected lungs from CT scans (c.f. 3.1.1) using SSD+MP or
SSD+UI. The positive and negative segmentations are ob-
tained by intensity thresholding and connected components.
We use the lungs of an uninfected animal as template.

4. CONCLUSION

We have shown that the proposed method allows the user to
control template-based segmentation by providing a positive
and negative segmentation. It is intuitive as well as applicable
to other organs, species, pathologies, and imaging modalities.
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