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Abstract:

A novel solution is presented to a recurring problem
in statistical modeling—estimating a probability mass
function (pmf) for a discrete random variable from a
small sample. The solution naturally leads to smooth
pmf estimates, requires no held out data, nor makes any
prior assumptions about the unknown pmf, while still
providing a way to incorporate prior knowledge when
available. A pmf is deemed admissible as an estimate
if it assigns merely a higher likelihood to the observed
value of a sufficient statistic than to any other value pos-
sible for the same sample size. The maximum likelihood
estimate is trivially admissible by this definition, but so
are many other pmfs. An estimate is selected from this
admissible family via criteria such as maximum entropy
or minimum I-divergence. Empirical results in statisti-
cal language modeling are presented to demonstrate that
estimates obtained in this manner have performance that
is competitive with state-of-the-art estimates, and have
additional desirable properties not found in the state-of-
the-art.

1. Common Responses to Data Sparseness

Let �������
	 be a probability mass function (pmf) on a
discrete and finite set �� �����
�
������� � , and consider
the problem of estimating � ������	 from a sequence ����������
�
���
����� � of independent samples, drawn according
to a common distribution � ������	 . To facilitate a more con-
crete exposition, think of � as the vocabulary of a statisti-
cal language model (LM), and � as the training corpus.
This estimation problem is, of course, a recurring prob-
lem not only in natural language processing (NLP) but
indeed in all of statistics. A popular estimate of ��������	 is
the maximum likelihood estimate, �"!  �$#�%'&(�*)�+,-� �, �. / 0 �21 # � / �3%4& �65 %879� � (1)

where 1 #;:<& is the indicator function of an event : ,
and )�+ is the observed count of a word % in the cor-
pus � .

 � is usually adequate when
, = �

and,>=6?$@�A + B �C�D�EGFIHKJ +ML�N . But small samples usually re-

sult in
 �$#�%'& being unacceptably small for some %O7P� .

Zero probabilities, in particular, lead to severe perfor-
mance degradation when the estimate

 � is subsequently

employed, e.g., for automatic speech recognition, pars-
ing, machine translation, and other NLP applications in
which statistical models are used.

One standard solution to data sparseness is Bayesian
estimation, in which � ���;�
	 itself is viewed as a
continuous-valued random variable on the unit simplexQ RTSUQ VXW

, with a prior probability density YZ#[�\& . Under
a quadratic loss function, the Bayesian estimate

 �^]`_ba 	bc
of � ������	 is the mean of the posterior probability YZ#;�8d �"&
given the sample. Formulae such as � ]e_ba 	bc(!  � ]e_ba 	bc�#�%'&(� )�+gfih, fjh � �65 %$7k� � (2)

for the Dirichlet prior have been used, where the hyper-
parameter h is chosen based on some prior knowledge
about � �����
	 ; h � �

, h � �l and h � �W are often used
[1]. The choice of the prior itself, such as the Dirichlet,
is sometimes guided by the tractability of the resulting
computation of the mean under the posterior probability.

Other well known solutions in language modeling (and
elsewhere) include Good-Turing discounting, constant
discounting, natural discounting, Witten-Bell discount-
ing, and others [2]. In all these methods, the discounted
estimate of �^���;�
	 is computed as �^m2n c;obp���qKrZ!  ��m2n c�obp��
qKr
#;%4&(�*sutwvyx{z J twv L� if )�+}|u~ , andz J�� L� if ) + � ~ , (3)
where the discount parameters �'#�� & are estimated via
some heuristics, or from a held out portion of � , to pro-
vide nonzero probability to unseen words. Readers in-
terested in details of these methods are referred to the
survey paper by Chen and Goodman [3]. All these meth-
ods make some ad hoc assumptions about the unknown�^������	 that are not substantiated in � , and some methods
additionally divide � into a training and a held out set,
further aggravating data sparseness. Even in the theoret-
ically pleasing Bayesian case, the purpose of the prior
is often only to ensure that the MAP estimate

 � ]`_ba 	bc is
positive everywhere, and different priors that each ensure
this may therefore lead to different estimates.

Maximum entropy estimation is another standard so-
lution to data sparseness. Instead of estimating

 �$#;%4&
for each %O7u� according to (1), the maximum entropy
method first estimates

 �$#�%�7U:g��&��  � � for select sets:�� S � , ��� �����
�
�
���
, for which we have sufficient

evidence in � . Fixing the probability of some subsets
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of � in this manner typically under-specifies the pmf of
interest, leading to a set � of admissible pmfs��� � ��7 Q R�� �$#[:��y&(�  � � � �}� �����
������� � (4)

in which the maximum likelihood estimate
 � of (1) is

but one member. The admissible pmf with the highest
Shannon entropy is then chosen as the estimate of � ������	 : ����_���� qKr � @�����?$@�AC���� .+ ��� �$#;%4&4��� � ��$#�%'& � (5)

It can be shown that for every %�7�� , as long as at
least one � 7�� satisfies �$#�%'& |¡~ , it follows that ����_���� qKr #;%4& |�~ . Thus the maximum entropy estimate is
inherently smooth. There are several heuristics but few
principles for selecting the sets :¢� S � or even

�
. Some:�� ’s are typically singleton, specifying, for instance, the

probability of words that have been seen sufficiently of-
ten in � ; some :g� ’s may contain all words which can
take on a certain grammatical part of speech, e.g. ad-
jective; some :g� ’s may overlap with others; etc. There-
fore, while maximum entropy estimation (5) eliminates
the need for some of the ad hoc assumptions made by
other techniques, it leaves open the problem of selecting
the (feature) sets that define � in (4).

Another weakness of the classical maximum entropy
method is that the specification of � via equality con-
straints leads to an ad hoc choice for any candidate : �
— either one must constrain its probability to be exactly � � , or leave it completely unconstrained. This is unsat-
isfactory. For instance, if one were considering all sin-
gleton sets

� %£� as candidate :g� ’s, then naively including
all of them in the definition of � amounts to requiring�$#�%'&¤�  �$#;%4& for all % , or �¥� �  �}� . On the other hand,
not imposing constraints on, say, all sets

� %£� with ) +§¦ �may result in
 ����_���� qKr #;¨©&ª�  �^��_���� qKr #�%'& even if )�« � ~and )�+¬|~ . Inequality constraints have been proposed

to address this problem [4, 5].�¥� � � � � � ¦ �$#[: � & ¦¯® � � �}� ���
���
���
� � � (6)

To the best of our knowledge, there has not been much
discussion in the literature of a principled way to choose� � and ® � , particularly in a way that depends only on � .

Some techniques take inspiration from the exponential
form of the maximizer

 ����_���� qKr in (5), and attempt to
address the �"� �  �}� problem by assuming a prior on the
parameters of the exponential form, a prior that excludes � as a solution [6]. They are Bayesian estimates (2) of
a parametric pmf, not maximum entropy estimates (5) of� ������	 , and entail ad hoc hyperparameters just as other
Bayesian methods.

In the following section, we briefly describe a tech-
nique we have recently developed to address some of

these concerns using a notion of a maximum likelihood
set [7]. In Section 3., we describe how this technique is
applied to the estimation of a statistical language model.
We present empirical results in Section 4. and conclude
in Section 5..

2. The Maximum Likelihood Set

Let
 Q R J � L S*Q R denote the set of all possible empirical

distributions, or types, for a sample of size
,

[8]. A type,
which is the same as the maximum likelihood estimate of
(1), is fully specified by the counts # ) ���
���
��� ) W & , and for,

independent samples drawn according to a common
pmf � ������	 7 Q R , the probability of observing a type

 �°7 Q R J � L is � ������	 #  �\&(�¯� ���;�
	 # ) ���
�
���
� ) W &� ,O±) � ± �
��� ) W ±4² + � ������	 #;%4& t v (7)

For a given type
 �³7  Q R J � L , we define the maximum

likelihood set (MLS) as´ #  �\&Z� B ��7 Q R d �$#  �\&ªµ��$#  �·¶¸& �I5  �·¶27  Q R J � L N (8)
In words,

´ #  �\& is the set of all pmfs under which the
observed type is no less likely than any other type in Q R J � L . An equivalent characterization of the MLS is pro-
vided in [7]. ´ #  �\&(� � �¥7 Q R�� 5 #;¨ � %4&ª79�¯¹9� �# )�«ºf � &I�$#;%4&ªµ ) + �$#�¨2&K� (9)

As
 � ranges over types in

 Q R J � L , the MLSs cover all
of
Q R

, as illustrated for
� �¼» in Figure 1. The MLS has

several desirable properties which we reproduce from
[7].

1.
´ #  �\& is a closed, convex,

� ¹¢# ��½u� & sided poly-
hedron in

Q R
.

2. The observed type
 � is always in

´ #  �\& but no

other type in
 Q R J � L is.

3. Diameter: ¾�� ½  �8¾ � ¦P¿ # ��½u� & , x � for every��7 ´ #  �\& .
4. Viewing

 � as a random variable,��À ?�gÁ �ÃÂ�ÄeÅC���ÆiJ�ÇC L ¾�� ½ � ���;�
	 ¾ � � ~ , � ������	 -a.s.

5. If ) + |¯~ for some word % then �$#�%'& |¯~ for every��7 ´ #  �\& .
2
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Figure 1: Illustration of the Maximum Likelihood Sets inQ R
for all the possible types for an alphabet of size

� �¯»
for
, �T» samples (Left) and

, � � ~ samples (Right).
Each polygonal “cell” is an MLS contains exactly one
type marked with a cross.

6. There exist pmfs �È7 ´ #  �\& such that �$#�%'& |�~for every %É79� .

7. Faithfulness to evidence: if )�«iÊ) + then �$#�¨2& ¦�$#;%4& for every ��7 ´ #  �\& .´ #  �\& is proposed as an admissible set of pmfs, from
which a particular pmf may be chosen as an estimate of
the underlying pmf � �����
	 using secondary criteria. In
particular, if a reference pmf Ë is available, i.e. an esti-
mate one would find acceptable when

, � ~ , then one
way to choose an element of

´ #  �·& is : �§ÌÍ � @���� ? À�ÎC���ÆiJ�ÇCÐÏ¤Ñ L�Ò #[�8¾
Ë\&� @���� ? À�ÎC���ÆiJ�ÇC Ï¤Ñ L .+ ��� �$#;%4&4��� � �$#�%'&Ë$#�%'& (10)

Attainment of the minimum in (10), and the uniqueness
of the minimizer, is guaranteed by

´ #  �\& being closed
and convex and by the convexity of Ò #ÔÓ�¾
Õ�& [9, Theorem
2.1].

Now, if Ë is the uniform pmf on � , then the crite-
rion (10) for selecting

 � ÌÍ is simply maximum entropy.
Note further that the K-L divergence is well defined,
and retains its convexity, even if Ë does not sum to
unity. This enables encoding prior knowledge about the

relative probabilities of words in Ë with considerable
ease. Finally, )
« � ) + and Ë$#�¨2&k�ÖË$#;%4& guarantees � ÌÍ #�¨2&��  � ÌÍ #;%4& . This results in great simplifications in
the numerical computation of

 � ÌÍ in our experiments.

3. Applications to Statistical Language
Modeling

Statistical language models are a key component in NLP
applications such as automatic speech recognition, ma-
chine translation, spelling correction, and document re-
trieval. Language modeling entails estimating a proba-
bility distribution over word-sequences, and this is typi-
cally done by modeling the sequence of words in a sen-
tence by a finite memory Markov chain. An n-gram
model is a set of conditional pmfs �$# �¢× d �����
�
�������g× x � & ,one for every conditioning event. In applications such
as document retrieval, where word-order is not of
paramount importance and a bag-of-words representa-
tion is adequate, i.i.d. models, called unigram models,
are used. In all cases, there is a need to estimate a pmf,
marginal or conditional, on the vocabulary.

In this section, we present experimental results for the
estimation of unigram models as well as joint probabil-
ities for pairs of consecutive words, or bigrams. We be-
gin, for the sake of completeness, with a brief review of
standard unigram and bigram estimation using a smooth-
ing technique popular both in language modeling and
elsewhere in statistics.

3.1 Good-Turing Estimation of Probability Mass
Functions

Given a training sample � for the estimation of a un-
igram model, let Ø t denote the number of words with
count value ) . Note that ~ ¦ Ø t ¦ � for ~ ¦ ) ¦ ,and Ø t is zero otherwise. The Good-Turing estimate of�^������	 [10], which may be heuristically justified in many
ways, is given by ��Ù2�¤#;%4&¤� # )
+�f � &IØ t vMÚ �, Ø twv � 5 %879� � (11)

The Good-Turing formula may be written as � Ù2� #;%4&(� # )�+gf � &bØ t vMÚ �) + Ø twv  ��#�%'& � 5 % � ) + |P~ �
(12)

and since the term in front of
 �$#�%'& is typically less than

1, particularly for small ) + , the technique is called Good-
Turing “discounting.” We will compare the empirical
performance of (11) with the corresponding estimate of
(10) for several different choices of Ë .

Note that all words which have the same count in the
training corpus get the same probability in (11) and (12).
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In particular, the Good-Turing estimate (11) resembles
the maximum likelihood estimate (1), except that it uses
smoothed counts ) Ì+ � # )�+¢f � &bØ t vKÚ �Ø t v (13)

instead of the original counts )
+ . This view permits ex-
tension of the Good-Turing formula to joint probabilities
of word-pairs, word-triples etc. E.g., if ) « + denotes the
number of times ¨ was followed by % in a training cor-
pus, then Good-Turing bigram estimate is �^ÙÛ�¤#�¨ � %'&(� # )�«�Ü + f � &bØ twÝyÞ v Ú �, Ø twÝyÞ v � 5 ¨ � %ß7k�¯¹9� �

(14)
Other methods for smoothing bigram distributions are
discussed at length elsewhere [3].

3.2 Reference Distributions for MLS-Based Estima-
tion of Word Probabilities

If obtaining smooth estimates was the primary goal, one
would naturally use the uniform distribution on � forË in (10). We obtain empirical results for this (max-
imum entropy estimation) case as a first step. How-
ever, all words are not equally likely a priori, and it is
known from several studies that the count )y+ and the
rank of a word % , when the vocabulary is sorted in order
of decreasing counts, has a roughly inverse relationship
named Zipf’s law [11]. This provides a natural reference
pmf Ë for (10). Specifically, empirical studies suggest
that Ë$#;%4&(� �

rankà�#;%4& (15)

holds with áâ� � for unigrams and áã� ~ � ä�å for bigrams
[12]. Note that the normalization constant that makes Ë
a pmf need not be computed, since it plays no role in
the minimization of (10). The resulting estimate

 � ÌÍ may
then be interpreted as the pmf closest to Zipf’s law that is
supported by the evidence in � .

Given a vocabulary, however, we still have no a priori
way of determining the rank-ordering of words needed
for (15). We simply use the rank-ordering empirically
observed in � to determine Ë . Furthermore, instead of
breaking ties between words with the same count in � ,
all words which have the same count get a rank equal to
the mean of the ranks spanned by them. This last sim-
plification results in a significant reduction in complex-
ity. By assuming words with the same observed counts
to have the same Ë -probability, we are assured that they
will have the same

 � ÌÍ probability, reducing the number
of free variables in the numerical optimization of (10) of
finds

 � ÌÍ . In the unigram pmfs estimated below, for in-
stance, the number of parameters needed to specify

 � ÌÍ

reduces from 50,000 to 600. The minimizer of (10) is
computed using the numerical optimization package CF-
SQP [13].

4. Empirical Results for Language
Modeling

We have conducted experiments on English text from
the Wall Street Journal corpus. A particular subset of
this corpus, called the UPenn Treebank corpus, widely
used by many researchers in language modeling, has a
standard division into Sections, named 00 through 24.
We use Sections 00-22, containing about 900K words,
as our training corpus, and Sections 23-24, containing
100K words comprise our test corpus. For the purpose
of studying the variability of the estimates, we divide
Sections 00-22 into 10 roughly equal parts, and results
averaged over these smaller training corpora are also pre-
sented.

We make a list of all seen words from Sections 00-
22 and augment this vocabulary with a set of unspeci-
fied “unseen” words. The decision on how many unseen
words to include is presently ad-hoc — based on a leave-
one-out estimate, the number of unseen words is set ex-
actly equal to the number of words seen only once in the
corpus. Every new word in the test set, upon first en-
counter, displaces one of the hitherto unspecified unseen
words from the vocabulary, and is treated thereafter as
a seen word. We remark that the MLS of (8) and, for
suitable reference pmfs Ë , the estimate of (10) are well
defined even for an infinite vocabulary, and we plan to
investigate this more aesthetic alternative in the future.

To measure the efficacy of a pmf estimate, we compute
the average codeword length (in bits) that the estimate

 �
permits to achieve on the type

 �^��	bcær of the test set:�, ��	bcær � D�H�çGè. / 0 � ��� � � ��# � / & � Ò #  ����	bcæry¾  �·& fjé #  ����	bcær�& �
(16)

where
, ��	bcær is the size of the test set

��� � ���
������� � DMH�çGè � ,
and é the Shannon entropy.

4.1 Empirical Results for Unigram Estimation

We use the counts from Sections 00-22 to compute V.
The procedure described above yields V=52743. The av-
erage codeword length (16) of the test set, along with the
standard deviation based on the 10 smaller training sets,
are shown in Table 1 for various pmf estimates.ê The Bayes estimate for h � �

is indistinguishable
from

 � ÌÍ with a uniform Ë .ê The use of a Zipf’s reference pmf significantly im-
proves over the uniform Ë , and makes

 � ÌÍ almost
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competitive with
 �^ÙÛ� .ê The popularity of the Good-Turing estimator is evi-

dent from its low codeword length. Though not seen
here,

 � Ù2� #;%4& is not guaranteed to be monotonic in) + .ê Using
 � Ù2� as the reference pmf Ë yields an es-

timate that is consistent with observed counts (cf
property 7. in Section 2.), with no loss in codeword
length. (The Good-Turing estimate was not inside
the MLS in any of our experiments.)

The last column suggests that the MLS contains very
competitive pmfs that may be found by using the best
competitor as a reference, and getting other desirable
properties for free.

4.2 Empirical Results for Bigram Estimation

We report preliminary results for bigram estimation in
Table 2. Note that

� � ¿ �Më�ì`����ì ¿�í � ~ íÐî , the square of
the unigram vocabulary size, and we estimate the joint
distribution

 ��#�¨ � %'& for consecutive words #;¨ � %4& , not the
conditional distribution

 �$#;%©d ¨©& of a word given the pre-
vious one. We collect bigram counts ) « + from Sections
00-22, compute the Good-Turing estimates of (14), and
MLS-bases estimates with different reference Ë ’s.ê It is clear that the Bayes estimate is dramatically

poor, primarily due to the large vocabulary and a
prior ( h � � ) that results in over-smoothing.ê Zipf’s law as a reference Ë improves

 � ÌÍ dramati-
cally over the Bayesian estimate.ê  � ÌÍ improves further if the Good-Turing estimate is
used as a reference.

The MLS-based estimates
 � ÌÍ are competitive with the

state of the art, and do not suffer from any nonmono-
tonicity.

5. Concluding Remarks

We have outlined a new way of viewing the problem of
pmf estimation, particularly from small samples com-
monly encountered in numerous applications. The view,
based on the notion of the maximum likelihood set de-
fined in (8), opens many avenues of investigations not
only in language modeling but in other areas of statisti-
cal estimation. The preliminary experiments presented
here demonstrate that pmfs from the MLS selected using
the K-L divergence criterion of (10) are theoretically well
motivated, have many desirable properties and competi-
tive performance (even in an application that has been
studied for decades).

Readers interested in language modeling may note
that comparisons are currently underway with other well
known alternatives to Good-Turing [3]. Many of these
alternatives, such as the Katz back off model [14], fo-
cus on conditional pmfs, e.g. �$#�%2d ¨2& . The MLS idea
extends straightforwardly to this situation by estimating
either (i) all conditional pmfs from a single bigram esti-
mate of Section 4.2, or (ii) each conditional pmf �$#��¸d ¨©&
separately, with a unigram estimate from Section 4.1 as
the reference Ë . The latter is particularly elegant, since � ÌÍ #I�æd ¨2& naturally reverts to the lower-order reference Ë
for unseen conditioning events ¨ , where

, � ~ , and
back off need not be externally enforced.
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