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Tracking Cross-Validated Estimates of Prediction
Error as Studies Accumulate

Lo-Bin CHANG and Donald GEMAN

In recent years, “reproducibility” has emerged as a key factor in evaluating x applications of statistics to the biomedical sciences, for
example, learning predictors of disease phenotypes from high-throughput “omics” data. In particular, “validation” is undermined when error
rates on newly acquired data are sharply higher than those originally reported. More precisely, when data are collected from m “studies”
representing possibly different subphenotypes, more generally different mixtures of subphenotypes, the error rates in cross-study validation
(CSV) are observed to be larger than those obtained in ordinary randomized cross-validation (RCV), although the “gap” seems to close as m
increases. Whereas these findings are hardly surprising for a heterogenous underlying population, this discrepancy is then seen as a barrier
to translational research. We provide a statistical formulation in the large-sample limit: studies themselves are modeled as components of a
mixture and all error rates are optimal (Bayes) for a two-class problem. Our results cohere with the trends observed in practice and suggest
what is likely to be observed with large samples and consistent density estimators, namely, that the CSV error rate exceeds the RCV error
rates for any m, the latter (appropriately averaged) increases with m, and both converge to the optimal rate for the whole population.

KEY WORDS: Bayes’ rule; Classification; Mixture model;

1. INTRODUCTION

We provide a statistical analysis of certain empirical observa-
tions encountered in attempting to validate applications of sta-
tistical learning to prediction. Suppose a classifier is constructed
from data to distinguish between two classes or hypotheses, call
them class 1 and class 2. Suppose further that data used to learn
the classifier have been assembled from m sources or “stud-
ies,” each consisting of samples from each of the two classes.
The studies are often associated with “subclasses,” which can
exhibit considerable interstudy diversity but still represent the
same general class. In fact, each study population may not rep-
resent a pure subclass but rather a mixture of subclasses, and
several study populations may be drawn from the same mixture.
The standard approach to quantifying the performance of the
learning algorithm is to estimate the generalization error using
some form of cross-validation. One way is to randomly and
repeatedly select some fraction (say 90%) of the pooled data
for training and test the classifier on the remaining (say 10%)
of the samples, averaging the results. There are other plausible
variations, such as “within-study cross-validation,” in which the
error rate for each study is estimated by cross-validation and
then the results are averaged or summarized. We shall focus on
the pooled one, call it RCV for randomized cross-validation and
denote the estimated error rate by êRCV(m). Notice that the iden-
tity of the individual studies is lost in testing (although possibly
maintained during training). Another possibility, call it CSV for
cross-study validation, is to maintain the identity of the indi-
vidual studies by leaving each study out in turn, training on the

Lo-Bin Chang is Assistant Professor, Department of Statistics, Ohio State
University, Columbus, OH 43210 (E-mail: lobinchang@stat.osu.edu). Donald
Geman is Professor, Department of Applied Mathematics and Statistics, Johns
Hopkins University, Baltimore, MD 21218 (E-mail: geman@jhu.edu). The au-
thors gratefully acknowledge the support of the Defense Advanced Research
Projects Agency under contract FA8650-11-1-7151, and the National Science
Council under grant 100-2115-M-009-007-MY2, partial support of the Center
of Mathematical Modeling & Scientific Computing and the National Center for
Theoretical Science, Hsinchu, Taiwan.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

other m − 1 studies, and testing on the left-out study. Let êCSV

denote the average error rate.
Aggregating data from multiple sources to learn and test pre-

diction rules is common in the analysis of high-dimensional
biomolecular data, where the motivation is usually to increase
consistency by accounting for population heterogeneity (Shen,
Ghosh, and Chinnaiyan 2004; Michiels, Koscielny, and Hill
2005; Xu et al. 2005, 2008; Teschendorff et al. 2006; Yang
et al. 2008; Ma et al. 2014). In particular, there has been a sub-
stantial effort to develop predictors of disease based on “omics”
data generated with high-throughput technologies. A notable ex-
ample is distinguishing between two cellular phenotypes from
mRNA transcript levels (“gene expression”) collected from cells
in assayed tissue, for instance detecting the presence of disease
(e.g., “tumor” vs. “normal”), discriminating among cancer sub-
types (e.g., “GIST” vs. “LMS”) and predicting clinical outcomes
(e.g., “poor prognosis” vs. “good prognosis”). Generally, each
individual has a (usually hidden) subphenotype label, and a
“study population” is a collection of samples, which is a par-
ticular mixture of subphenotypes. Validation methodology has
become a core issue in this setting. Whereas many articles have
reported high accuracies (usually estimated by cross-validation),
finding prediction rules and “signatures” (genes or gene prod-
ucts supporting the rules) that give consistent results across
multiple trials remains elusive (Ioannidis et al. 2009; Ma, Funk,
and Price 2010; Sung et al. 2012). Sometimes a promisingly low
rate êRCV(m) is reported in one article but is seen to fail “inde-
pendent validation” when afterward either the same classifier is
applied to a new study m + 1, or êCSV(m + 1) yields a substan-
tially higher error rate. Such observations are then interpreted
as calling into question the “reproducibility” of the results.

The “stability” of signatures and feature selection was an-
alyzed by Meinshausen and Buhlmann (2010) and Kirk et al.
(2013), and reviewed by He and Yu (2010); as for the role of
sample size in reproducibility, see Ein-Dor, Zuk, and Domany
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(2006) for the effect on stability and Braga-Neto and Dougherty
(2004) for the effect on RCV. For these and other reasons, the
implications for clinical practice are widely acknowledged to re-
main limited; see Altman et al. (2011), Marshall (2011), Evans
et al. (2011), and the discussion in Winslow et al. (2012). The
discrepancy between the efficacy of biomarkers reported in de-
velopment and the scarcity of robust omics-based tests delivered
to the clinic was the subject of a recent in-depth study by the
United States Institute of Medicine (Micheel, Nass, and Omenn
2012).

The direct origin of this work is a series of experiments con-
ducted in Ma et al. (2014) to quantify the impact of “study-
effects” on predictive performance by comparing variations on
RCV and CSV, referred to as “comparative cross-validation
analysis.” The authors gathered publicly available gene expres-
sion data from 1470 microarray samples of 6 lung phenotypes
from 26 independent experimental studies. For several binary
scenarios (e.g., one lung disease vs. normal), and using support
vector machine (SVM) learning, the authors plotted two curves,
roughly corresponding to êRCV(m) and êCSV(m); see Ma et al.
(2014) for details about sample sizes, etc. One general observa-
tion was that the CSV yielded systematically larger error rates;
two others were that êRCV(m) tended to increase with m and that
the “gap” between êRCV(m) and êCSV(m) seemed to decrease. In
view of these observations, one conclusion was that by exam-
ining how fast CSV “catches up” with RCV as the number of
studies is increased, one can estimate when “sufficient” diver-
sity has been achieved for learning a robust molecular predictor
likely to translate effectively to new clinical settings.

The observed difference between RCV and CSV makes good
sense from a statistical perspective, particularly when m is small
and the population is very heterogenous for at least one of the
two classes. As usual, we assume all the samples are inde-
pendently drawn. Clearly, the key distinction between RCV and
CSV is that in RCV the training and testing data follow the same
distribution, which is necessary to have unbiased error estimates
(for the training sample size). In contrast, in CSV, this condi-
tion is often violated in practice, that is, the data for at least one
of the two classes are not identically distributed across studies.
This can occur for a variety of reasons, often domain-dependent,
but usually associated with either differences in measurement
technologies and experimental protocols or with inherent het-
erogeneity in the underlying population. For example, in the
case of gene expression, one source of variation is “techni-
cal” and refers to “lab effects” and “batch-effects” (see, e.g.,
Shi et al. 2006; Hoen et al. 2013); expression values derived
from the same tissue may vary considerably from platform to
platform and/or from day to day. Depending on the enrollment
protocol, a study population may also be a mixture over ethnic
groups and other factors. The main source of interest here is
the inherent diversity within the same general phenotype as dis-
cussed above, for example, due to environmental or geographic
differences. Clearly randomized sampling obscures systematic
differences associated with “study-effects” whereas CSV pre-
serves them. Finally, whereas the issue of bias in RCV has been
considered from the viewpoint of density estimation (Scott and
Terrell 1987), model selection (Varma and Simon 2006), tun-
ing parameters in supervised learning (Tibshirani and Tibshirani
2009), and specifically for microarray data (Braga-Neto 2007),

our concern is not RCV itself but rather the comparison with
CSV.

Our objective is to explain the empirical behavior of the two
curves m −→ êRCV(m) and m −→ êCSV(m). To provide a theo-
retical analysis, we make several simplifying assumptions. First,
we remove the effects of sample size and the choice of the
classification method by assuming there is sufficient data to
estimate the true distributions and therefore use the Bayes’ clas-
sifier, a weighted likelihood ratio test. In addition, we assume
an ideal situation in which the observation vector has already
been corrected for all the study-to-study differences described
above except for phenotype diversity, that is, the existence of
subphenotypes; this then is the source of the difference in the
distribution of the data from study to study. Overall popula-
tion heterogeneity is then modeled as a mixture of possible
studies. (Consequently, each element of this mixture is itself a
mixture over subphenotypes; a finer, multi-scale analysis might
make this explicit by identifying studies with the parameters of
a multinomial model for the subphenotype mixture. However,
this is beyond the scope of this article.) The selection of m stud-
ies then corresponds to drawing m iid samples from the mixture
variable. Since studies are sampled with replacement, and the
same one may appear multiple times. In the next section, we will
characterize this as the limiting case of a finite sample scenario
using the estimated Bayes’ classifier for predictions.

In this large-sample limit, eRCV(m) and eCSV(m) represent
optimal error rates in the two corresponding scenarios. The
former is the error rate when the data under each class follow
the same (mixture) distribution that appears in the likelihood
ratio for that class. The latter is the error rate when the data for
each class follow one of the distributions in the mixture and this
term is left out of each mixture in the likelihood ratio. Both error
rates are random variables due to the randomized selection of
studies. We prove three results:

1. With probability one,

eCSV(m) ≥ eRCV(m), m ≥ 2.

The interpretation is that with CSV the distributions fol-
lowed by the data may differ from those appearing in the
likelihood ratio.

2. m → E[eRCV(m)] is increasing, where the expectation is
with respect to choices for the m studies. Thus, on average,
the larger the mixture the harder the problem, which is not
surprising.

3. With probability one eRCV(m) → eopt, and eCSV(m) →
eopt in probability, where eopt is the Bayes’ rate for the
whole population. Therefore, CSV eventually “catches-
up.”

Following a more precise formulation in the next section,
three theorems are stated in Section 3, followed by experiments
with both simulated and real data in Section 4 and a Discussion
in Section 5. The proofs are in the Appendix.

2. MATHEMATICAL FORMULATION

We begin with the basic notation. As explained above, a study
is identified with a mixture of subclasses. Assume the observed
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data are continuous with a possibly different d-dimensional den-
sity for each class for each study; everything goes through the
same way with discrete distributions. We also allow the class
likelihoods to depend on the studies. As for the mixture model
over studies, the distribution is unrestricted.

X : a random vector in Rd representing the observation,

Y : a binary random variable representing the class,

Z : a random variable representing a study,

pz(k) : prior class probabilities given Z = z for k = 1, 2,

fz(x|k) : class-conditional densities of X given Z = z, Y = k.

First consider the classification problem at the population
level. Following the notation above, the joint distribution
of the observation X = x and the class Y = k is f (x, k)

.=
E(pZ(k)fZ(x|k)). By integrating over x and writing f (x, k) =
f (x|k)p(k), the probabilities of two classes are

p(1) = E(pZ(1)), p(2) = E(pZ(2)),

and the densities of two classes are

f (x|1) = 1

p(1)
E(pZ(1)fZ(x|1)),

f (x|2) = 1

p(2)
E(pZ(2)fZ(x|2)).

The Bayes’ classifier compares p(1)f (X|1) with p(2)f (X|2)
and the Bayes’ error rate is

eopt = P

(
p(1)f (X|1)

p(2)f (X|2)
> 1

∣∣∣∣X ∼ f (·|2)

)
· p(2)

+P

(
p(1)f (X|1)

p(2)f (X|2)
≤ 1

∣∣∣∣X ∼ f (·|1)

)
· p(1).

In applications, we have a limited number of samples col-
lected by aggregating study populations. Each sample is an
observation together with a class label. Our analysis is carried
out in the large-sample limit of the following finite-sample sce-
nario for generating data. First, m studies are selected from m iid
realizations from Z; call these z1, . . . , zm. There is a study pop-
ulation Sj associated with each j = 1, . . . , m, which consists
of n1,j labeled samples from fzj

(·|1) and n2,j labeled samples
from fzj

(·|2); the total sample size of Sj is nj = n1,j + n2,j .
Again, several Sj may represent the same study in the sense
of a subphenotype mixture. However, the sample sizes nj are
not meaningful and depend on various extraneous factors. The
study data S1, . . . , Sm are used to learn the classifiers appear-
ing in RCV and CSV, leading to error estimates êRCV(m) and
êCSV(m), which of course also depend on z1, . . . , zm.

To minimize the dependence of our results on the specific
choice of classifier methodology (and the inherent complica-
tions in selecting its parameters) and to remove the effect of
sample size, we assume the underlying densities and class prob-
abilities can be perfectly estimated from the data and hence
the Bayes’ classifier is available, that is, the class with high-
est posterior mass is selected. This also allows us to inves-
tigate the optimal performance possible under each form of
cross-validation. In other words, we perform our analysis in the
large-sample limit where n1,j , n2,j → ∞ for each j, assuming
nk,j

nj
≈ pzj

(k) for k = 1, 2 and that our estimates of the class-
conditional densities fzj

(x|k), k = 1, 2, are consistent. Finally,

the distributions over aggregated studies are uniform mixtures
because we are weighting the studies identically; imbalances
among study populations have already been accounted for in
sampling z1, . . . , zm. This is consistent with what is done in
practice. (If the mixture densities are learned directly from the
pooled data, then adjustments must be made for varying the
sample sizes.)

For RCV, the error rate is then the Bayes’ error rate associated
with two mixture densities

1∑m
j=1 pzj

(1)

m∑
j=1

pzj
(1)fzj

(x|1)

and

1∑m
j=1 pzj

(2)

m∑
j=1

pzj
(2)fzj

(x|2),

which is

eRCV(z1, . . . , zm)

=
∑m

j=1 pzj
(2)

m
· P

(∑m
j=1 pzj

(1)fzj
(X|1)∑m

j=1 pzj
(2)fzj

(X|2)
> 1

∣∣∣∣∣X
∼ 1∑m

j=1 pzj
(2)

m∑
j=1

pzj
(2)fzj

(·|2)

⎞
⎠

+
∑m

j=1 pzj
(1)

m
· P

(∑m
j=1 pzj

(1)fzj
(X|1)∑m

j=1 pzj
(2)fzj

(X|2)
≤ 1

∣∣∣∣∣X
∼ 1∑m

j=1 pzj
(1)

m∑
j=1

pzj
(1)fzj

(·|1)

⎞
⎠ .

For CSV, the error rate is the average of m cross-study error
rates

eCSV(z1, . . . , zm)

= 1

m

m∑
j=1

{
pzj

(2) · P
(∑

i �=j pzi
(1)fzi

(X|1)∑
i �=j pzi

(2)fzi
(X|2)

> 1

∣∣∣∣∣X
∼ fzj

(·|2)

)

+ pzj
(1) · P

(∑
i �=j pzi

(1)fzi
(X|1)∑

i �=j pzi
(2)fzi

(X|2)
≤ 1

∣∣∣∣∣X ∼ fzj
(·|1)

)}
.

3. RESULTS

In the previous section, we considered the joint distribution
of X, the observation, Y , the class variable, and Z, the study. The
m studies are associated with m iid realizations of Z, which then
determine the RCV and CSV error rates. For simplicity, these
rates be denoted by

eRCV(m) = eRCV(Z1, . . . , Zm) and

eCSV(m) = eCSV(Z1, . . . , Zm).

These are of course random variables and the probability in
Theorem 1 and expectations in Theorem 2 are with respect
to Z1, . . . , Zm. The only assumption in the theorems below is
representing the studies as iid realizations of Z.
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As discussed above, we might expect that the error rate in
CSV validation would exceed that in RCV because in CSV the
distributions under which the error rates are computed are not
necessarily the same as the distributions in the likelihood ra-
tio. This of course is the large-sample version of “testing” on a
left-out study and “training” on the others combined. The fol-
lowing result states that this is indeed true in the pointwise sense,
that is, with probability one with respect to choosing the studies.

Theorem 1. For m ≥ 2,

P[eCSV(m) ≥ eRCV(m)] = 1.

Next, we consider the monotonicity of eRCV(m) and eCSV(m).
First, we would not expect either curve to be monotone a.s. since
adding one more study could make the classification problem
either easier or harder. However, what about the functions m →
E[eRCV(m)] and m → E[eCSV(m)]? For RCV, it would appear
that the prediction problem becomes increasingly difficult as the
number of studies increases, and this is indeed the case.

Theorem 2. For m ≥ 2,

E[eRCV(m + 1)] ≥ E[eRCV(m)].

As for E[eCSV(m)], we might expect this to decrease as m
increases based on the argument that we are seeing more and
more of the population as m increases and hence should be
less and less “surprised” when testing on a left-out study. This,
however, is not necessarily the case. In the following example,
E[eCSV(m)] is not decreasing, nor even is the expected gap
decreasing.

Example 1. Let the hidden variable Z assume only two values
z = 1 and z = 2 with probabilities ε and 1 − ε. Let f1(x|2) =
f2(x|2) = 1[0,1](x) and

f1(x|1) = 2 · 1[0, 1
8 ](x) + 6

31
· 1[− 31

8 ,0)(x),

f2(x|1) = 1

4
1[− 31

8 , 1
8 ](x).

Then when ε is sufficiently small,

E[eCSV(2) − eRCV(2)] < E[eCSV(3) − eRCV(3)].

(We omit the messy computation.) Since we know from Theo-
rem 2 that E[eRCV(m)] is nondecreasing, we obtain

E[eCSV(2)] < E[eCSV(3)].

Finally, we consider the asymptotic behavior of the two
curves as m → ∞. Recall that f (x|1) = 1

p(1)E(pZ(1)fZ(x|1))

and f (x|2) = 1
p(2)E(pZ(2)fZ(x|2)).

Theorem 3. As m → ∞, eRCV(m) → eopt almost surely
and eCSV(m) → eopt in probability. Moreover, if the set
{x : p(1)f (x|1) = p(2)f (x|2) �= 0} has measure zero, then
eCSV(m) → eopt almost surely.

4. NUMERICAL EXPERIMENTS

Based on the mathematical formulation in Section 2, we pro-
vide two experiments with specific mixture models to illustrate

the various properties of the two curves stated in the three theo-
rems. These experiments also reveal some of the subtleties. The
models for the first experiment is hand-crafted whereas the one
for second experiment is learned from real data, in fact from the
data employed in study of lung diseases (Ma et al. 2014), which
motivated this article.

Experiment 1

The intent is to model a very simple scenario in which there
is a one-dimensional observation with a Gaussian distribution
under each class for each study. For instance, X might repre-
sent blood pressure or heart rate, the two classes might rep-
resent “normal” and “elevated” and Z might corresponds to a
geographic location or some other stratification of a large and
diverse population.

Let Z = (Z(1), Z(2)), where Z(1), Z(2) are iid U (0, 1) ran-
dom variables. Let pz(1) = pz(2) = 0.5 for all z ∈ [0, 1]. In
class 1, X is normally distributed with mean Z(1) and vari-
ance σ 2; in class 2, X is also normally distributed with mean
0.5 + Z(2) and variance σ 2. Then, for any given Z1, . . . , Zm

iid∼ Z , we can compute the error rate eRCV(m) of the random-
ized cross-validation and the error rate eRCV(m) of the cross-
study-validation using Monte Carlo integrations. The difficulty
of the problem is determined by σ .

Figure 1 depicts the results for σ = 0.8, 1.0, 1.2. As expected,
larger variances correspond to larger error rates. The left panels
show eRCV(m) and eRCV(m) for m = 2, . . . , 7 for one specific
sequence Z1, . . . , Z7. First, we see that eRCV(m) ≤ eRCV(m)
for each m as stated in Theorem 1. Second, neither curve of
the curves eRCV(m),m = 2, . . . , 7 nor eRCV(m),m = 2, . . . , 7 is
monotone. Apparently, in this particular sample, the two means
Z(1) and 0.5 + Z(2) are very close in the fifth study for σ = 0.8
and in the third study for σ = 1.2.

The right panels show the expected values E[eRCV(m)] and
E[eCSV(m)] for m = 2, . . . , 7. These expectations are also cal-
culated by Monte Carlo integration. Notice that in this ex-
ample both curves are monotone, although in general only
m → E[eRCV(m)] is guaranteed to be monotone (Theorem 2).
In this experiment, around seven studies seem to be sufficient
to capture the diversity in the population in the sense that CSV
has “caught-up” with RCV.

Finally, we repeated the experiment for different choices of
pz(1), including pz(1) = 0.1, but the results were qualitatively
quite similar.

Experiment 2

In the previous example, the distributions were designed to
have considerable study-to-study variability, which is then re-
flected in the behavior of the two curves, for example, the ir-
regularity and large initial gap. As the next experiment shows,
this level of variability can be found in real data as well. In this
experiment, the models are learned from gene expression data.

We obtained the GCRMA lung disease microarray dataset
from Price Lab at Institute for Systems Biology (price.
systemsbiology.net), which consists of RNA counts derived from
the tissue of patients with either “normal” lungs or diagnosed
with one of several lung diseases (Ma et al. 2014). To have two
classes, we focused on the patient profiles for Adenocarcinoma
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Figure 1. Designed model. Z = (Z(1), Z(2)) iid∼ U (0, 1); fz(x), gz(x) are, respectively, N (z(1), σ 2) and N (0.5 + z(2), σ 2). The three rows
correspond to σ = 0.8, 1.0, 1.2. The two columns correspond to a fixed sequence Z1, . . . , Z7 (left) and the average over Z1, . . . , Z7. The error
rates for RCV are in blue and for CSV in red. The black line is the optimal error rate for the whole population.

(called ADC) and the nondisease phenotype (called NORM).
There are six studies (or labs) containing both ADC and NORM
data. Each study has included expression values for order 104

genes with the numbers of patients ranging from several tens to
several hundreds.

We selected three differentially expressed genes for ADC
versus NORM for each study using the Wilcoxon rank-sum
test. However, it is well known that training a classifier on the
same data used for filtering (extracting a reduced feature set)
can lead to rampant over-fitting and very biased error estimates,
especially when the number of features far exceeds the sample
sizes. As a result, we used one-third of data determine the three
genes and the remaining two-thirds the data for learning the

distributions. The three genes, say g1, g2, g3, are not simply the
ones with the smallest p-values. Whereas g1 has the smallest
p-value, g2 has the smallest p-value among those genes whose
absolute correlation with g1 is smaller than 0.2, and g3 has
the smallest p-value among those whose absolute correlations
with both g1 and g2 are smaller than 0.2. Then, for each of the
six studies, we learned a trivariate normal distribution for X =
(X1, X2, X3), the expressions of g1, g2, g3, for the ADC and
NORM classes. Finally, Z is assumed to be uniformly distributed
on {1, 2, 3, 4, 5, 6}.

Similar to the first experiment, the left panel of Figure 2
shows the two curves for a particular realization Z1, . . . , Z7

generated iid from U{1, 2, 3, 4, 5, 6}. (The choice of mmax = 7



1244 Journal of the American Statistical Association, September 2015

Figure 2. Models learned from real data. The population is a mixture of six possible subphenotype mixtures, with Z ∼ U{1, 2, 3, 4, 5, 6}.
The observation X = (X1, X2, X3) is the expression of three genes, and for each of the two classes ADC (a lung disease) and NORM, the learned
model is trivariate Gaussian. The left panel shows the error rate of the randomized cross-validation in blue and of cross-study-validation (red)
for one particular choice of seven studies. The right panel shows the expected error rates, EeRCV(m) (blue) and EeCSV(m) (red). The black line
is the optimal error rate for the whole population.

was dictated by computational issues.) For this particular choice
of studies, adding the third one results in a relatively large jump
from eCSV(2) to eCSV(3) but has less influence on eRCV. The
trivariate normal densities for the two classes of the third study
are in fact quite different from the mixture of the first two studies,
but the mixture density for the three studies is still similar to
the mixture of the first two. The right panel shows that, for
this model, the expectations of both eRCV(m) and eRCV(m) are
monotone. All error rates and expectations are calculated by
Monte Carlo integrations.

Clearly cross-study error rates are quite pessimistic relative
to RCV, where the (expected) error rate increases slowly and
approaches the Bayes’ error rate eopt = 0.0667. Even though
the study variable Z assumes only six possible values, it appears
that considerably more than m = 7 samples is necessary for the
expected CSV rate to get near eopt.

5. DISCUSSION

Many questions remain about the behavior of the two curves.
We have only considered the large-sample limit, but even here
several issues are unresolved. We know that E(eRCV(m)) ↗ eopt

(even a.s.), and that eCSV(m) converges in probability to eopt. Un-
der what conditions is E(eCSV(m)) decreasing in m, and hence
E(eCSV(m)) ↘ eopt? More generally, is E(eCSV(m)) ≥ eopt?.
Can eopt be estimated from the history {eRCV(k), eCSV(k), k =
1, . . . , m}?.

Turning to finite samples, it might be possible to obtain results
under some assumption on the distribution of the data and clas-
sification methodology, for example, assuming Gaussian data
and the estimated Bayes’ rule (i.e., Linear discriminant analysis
[LDA], etc.), or some variation on logistic regression or large
margin classifiers. Such results could be useful in practice. In
particular, in many applications, notably the biomedical ones
highlighted here, a key issue is how to make rational decisions
about how data are collected. (The importance of “original data”
in computational biology cannot be over-emphasized, partially
due to the effort required to collect them.) What is “enough”
data? More specifically, for prediction, when is the data collected

from m studies sufficient to capture the diversity of the underly-
ing population and be confident that error estimates will stand
up to “independent validation”? Informally, the answer should
be “when the two curves converge.” How does one quantify this
and provide a practical recipe? Finally, as suggested above, with
additional regularity it might be possible to construct an interval
estimate for eopt, which could be an indirect but effective way
to answer the question about sufficient data.

APPENDIX: PROOFS

Theorem 1 uses the following lemma. Let X be a random variable
generated from either density f0(x) under class 1 or from density g0(x)
under class 2, with

P1(·) = P(·|X ∼ f0), P2(·) = P(·|X ∼ g0).

Further, let f̃ (x) and g̃(x) be any two densities and consider the two
mixtures:

f̄ (x) = (1 − α)p̃(1)f̃ (x) + αp(1)f0(x),

ḡ(x) = (1 − α)p̃(2)g̃(x) + αp(2)g0(x),

where p̃(1) + p̃(2) = p(1) + p(2) = 1 and 0 ≤ p̃(1), p̃(2), p(1),
p(2), α ≤ 1. Notice that the f̄ and ḡ defined above are nonnegative
functions but not density functions.

Lemma 1. The error rate of the likelihood ratio classifier with f̃ (x)
and g̃(x) is greater than or equal to the error rate of the likelihood ratio
classifier using any mixture of these with the true densities. That is,

p(1) · P1

(
p̃(1)f̃ (X)

p̃(2)g̃(X)
≤ 1

)
+ p(2) · P2

(
p̃(1)f̃ (X)

p̃(2)g̃(X)
> 1

)

≥ p(1) · P1

(
f̄ (X)

ḡ(X)
≤ 1

)
+ p(2) · P2

(
f̄ (X)

ḡ(X)
> 1

)
.
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Proof of the Lemma. Let

A = {x|p(1)f0(x) ≤ p(2)g0(x) and p̃(1)f̃ (x) > p̃(2)g̃(x)}
= A1 ∪ A2

B = {x|p(1)f0(x) > p(2)g0(x) and p̃(1)f̃ (x) ≤ p̃(2)g̃(x)}
= B1 ∪ B2

C = {x|p(1)f0(x) > p(2)g0(x) and p̃(1)f̃ (x) > p̃(2)g̃(x)}
⊆ {x|f̄ (x) > ḡ(x)}

D = {x|p(1)f0(x) ≤ p(2)g0(x) and p̃(1)f̃ (x) ≤ p̃(2)g̃(x)}}
⊆ {x|f̄ (x) ≤ ḡ(x)},

where

A1 = {x|x ∈ A, f̄ (x) > ḡ(x)}, A2 = {x|x ∈ A, f̄ (x) ≤ ḡ(x)},
B1 = {x|x ∈ B, f̄ (x) > ḡ(x)}, B2 = {x|x ∈ B, f̄ (x) ≤ ḡ(x)}.

Now, consider any pair of density functions F, G satisfying

F (x) = f0(x) if x ∈ C ∪ D

G(x) = g0(x) if x ∈ C ∪ D

F (x) = 0 if x ∈ A1 ∪ B1

G(x) = 0 if x ∈ A2 ∪ B2

F (x) > 0 if x ∈ A2 ∪ B2

G(x) > 0 if x ∈ A1 ∪ B1.

The Bayes’ error rate is

p(1) · P1(A ∪ D) + p(2) · P2(B ∪ C)

= p(1) · [P1(A1) + P1(A2) + P1(D)]

+p(2) · [P2(B1) + P2(B2) + P2(C)].

Since this is optimal, it must be less than or equal to

p(1) · P1(p(1)F (X) ≤ p(2)G(X)))

+p(2) · P2(p(1)F (X) > p(2)G(X))

= p(1) · [P1(A1) + P1(B1) + P1(D)]

+p(2) · [P2(A2) + P2(B2) + P2(C)],

and we have

p(1) · P1(A2) + p(2) · P2(B1) ≤ p(1) · P1(B1) + p(2) · P2(A2),

and therefore

p(1) · [P1(A2) + P1(B2) + P1(D)]

+p(2) · [P2(A1) + P2(B1) + P2(C)]

≤ p(1) · [P1(B1) + P1(B2) + P1(D)]

+p(2) · [P2(A1) + P2(A2) + P2(C)].

Now notice that

A2 ∪ B2 ∪ D = {x|f̄ (x) ≤ ḡ(x)}, A1 ∪ B1 ∪ C = {x|f̄ (x) > ḡ(x)},
and

B1 ∪ B2 ∪ D = {x|p̃(1)f̃ (x) ≤ p̃(2)g̃(x)},
A1 ∪ A2 ∪ C = {x|p̃(1)f̃ (x) > p̃(2)g̃(x)}.

Hence, we obtain

p(1) · P1(f̄ (X) ≤ ḡ(X)) + p(2) · P2(f̄ (X) > ḡ(X))

≤ p(1) · P1(p̃(1)f̃ (X) ≤ p̃(2)g̃(X))

+p(2) · P2(p̃(1)f̃ (X) > p̃(2)g̃(X)),

and the proof is completed.

Remark 1. From the above lemma, we can show that the error rate
associated with the ratio of two functions

f̄ (x) = (1 − α)p̃(1)f̃ (x) + αp(1)f0(x),

ḡ(x) = (1 − α)p̃(2)g̃(x) + αp(2)g0(x)

is nonincreasing in α.

For simplicity, we introduce the following notation:

R1 = R1(z1, . . . , zm) =
{∑m

i=1 pzi
(1)fzi

(X|1)∑m

i=1 pzi
(2)fzi

(X|2)
≤ 1

}

R2 = R2(z1, . . . , zm) =
{∑m

i=1 pzi
(1)fzi

(X|1)∑m

i=1 pzi
(2)fzi

(X|2)
> 1

}

c(k) =
m∑

j=1

pzj
(k) for k = 1, 2.

Therefore,

eRCV(z1, . . . , zm) = c(2)

m
P

⎛
⎝R2

∣∣∣∣∣∣X ∼ 1

c(2)

m∑
j=1

pzj
(2)fzj

(·|2)

⎞
⎠

+ c(1)

m
P

⎛
⎝R1

∣∣∣∣∣∣X ∼ 1

c(1)

m∑
j=1

pzj
(1)fzj

(·|1)

⎞
⎠ .

Now, since for k = 1, 2,

P

⎛
⎝Rk

∣∣∣∣∣∣X ∼ 1

c(k)

m∑
j=1

pzj
(k)fzj

(·|k)

⎞
⎠

=
∫

Rk

1

c(k)

m∑
j=1

pzj
(k)fzj

(x|k)dx

= 1

c(k)

m∑
j=1

pzj
(k)
∫

Rk

fzj
(x|k)dx

= 1

c(k)

m∑
j=1

pzj
(k)P (Rk|X ∼ fzj

(·|k)), (A.1)

we obtain

eRCV(z1, . . . , zm) = 1

m

m∑
j=1

pzj
(2)P (R2|X ∼ fzj

(·|2))

+ 1

m

m∑
j=1

pzj
(1)P (R1|X ∼ fzj

(·|1)) (A.2)

Proof of Theorem 1. Assume that we have m studies z1, z2, . . . , zm.
From the above lemma, with fzj

(·|1) and fzj
(·|2) playing the roles of

f0 and g0, we have for each j ∈ {1, 2, . . . , m},

pzj
(2) · P

( ∑
i �=j pzi

(1)fzi
(X|1)∑

i �=j pzi
(2)fzi

(X|2)
> 1

∣∣∣∣∣X ∼ fzj
(·|2)

)

+pzj
(1) · P

( ∑
i �=j pzi

(1)fzi
(X|1)∑

i �=j pzi
(2)fzi

(X|2)
≤ 1

∣∣∣∣∣X ∼ fzj
(·|1)

)

≥ pzj
(2) · P(R2|X ∼ fzj

(·|2)) + pzj
(1) · P(R1|X ∼ fzj

(·|1)).
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This implies

1

m

m∑
j=1

pzj
(2) · P

( ∑
i �=j pzi

(1)fzi
(X|1)∑

i �=j pzi
(2)fzi

(X|2)
> 1

∣∣∣∣∣X ∼ fzj
(·|2)

)

+ 1

m

m∑
j=1

pzj
(1) · P

( ∑
i �=j pzi

(1)fzi
(X|1)∑

i �=j pzi
(2)fzi

(X|2)
≤ 1

∣∣∣∣∣X ∼ fzj
(·|1)

)

≥ 1

m

m∑
j=1

pzj
(2)P(R2|X ∼ fzj

(·|2))

+ 1

m

m∑
j=1

pzj
(1)P(R1|X ∼ fzj

(·|1)).

Hence, using Equation (A.2) we have

eCSV(m) ≥ eRCV(m) a.s.

Proof of Theorem 2. Using the optimality of the Bayes’ error rate,
we have

eRCV(m)

≤
∑m

j=1 pZj
(2)

m
· P

(
R2(Z1, . . . , Zm+1)

∣∣∣∣∣X
∼ 1∑m

j=1 pZj
(2)

m∑
i=1

pZi
(2)fZj

(·|2)

)

+
∑m

j=1 pZj
(1)

m
· P

(
R1(Z1, . . . , Zm+1)

∣∣∣∣∣X
∼ 1∑m

j=1 pZj
(1)

m∑
i=1

pZi
(1)fZi

(·|1)

)

= 1

m

m∑
j=1

pZj
(2)P(R2(Z1, . . . , Zm+1)|X ∼ fZj

(·|2))

+ 1

m

m∑
j=1

pZj
(1)P(R1(Z1, . . . , Zm+1)|X ∼ fZj

(·|1)),

where the last equality is obtained using the same argument in Equation
(A.1). Notice that in P(·), the probability is with respect to X only, that
is, Z1, . . . , Zm are fixed.

Thus,

E[eRCV(m)]

≤ 1

m

m∑
j=1

E[ pZj
(2) · P(R2(Z1, . . . , Zm+1)|X ∼ fZj

(·|2))

+ pZj
(1) · P(R1(Z1, . . . , Zm+1)|X ∼ fZj

(·|1))]

= E[ pZ1 (2) · P(R2(Z1, . . . , Zm+1)|X ∼ fZ1 (·|2))

+ pZ1 (1) · P(R1(Z1, . . . , Zm+1)|X ∼ fZ1 (·|1))]

= 1

m + 1

m+1∑
j=1

E[ pZj
(2) · P(R2(Z1, . . . , Zm+1)|X ∼ fZj

(·|2))

+ pZj
(1) · P(R1(Z1, . . . , Zm+1)|X ∼ fZj

(·|1))].

Again, by Equation (A.2), we obtain

E[eRCV(m)] ≤ E[eRCV(m + 1)].

Proof of Theorem 3. In this proof, to make it more clear what is fixed
and random, we replace z1, z2, . . . by Z1, Z2, . . ., an iid sequence. Then,
for almost any fixed x, we have

1

m

m∑
i=1

pZi
(1)fZi

(x|1) → EpZ(1)fZ(x|1) = p(1) · f (x|1)

and

1

m

m∑
i=1

pZi
(2)fZi

(x|2) → EpZ(2)fZ(x|2) = p(2) · f (x|2) (A.3)

with probability one. By a standard argument in measure theory,
with probability one, (A.3) holds for almost every x (with respect to
Lebesgue measure). Let

E = {x : p(1)f (x|1) > p(2)f (x|2)},
F = {x : p(1)f (x|1) ≤ p(2)f (x|2)},
G = {x : p(1)f (x|1) = p(2)f (x|2)},

Em =
{

x :
1

m

m∑
i=1

pZi
(1)fZi

(x|1) >
1

m

m∑
i=1

pZi
(2)fZi

(x|2)

}
,

and

Fm =
{

x :
1

m

m∑
i=1

pZi
(1)fZi

(x|1) ≤ 1

m

m∑
i=1

pZi
(2)fZi

(x|2)

}
.

Then, we know that almost surely limm→∞ 1Em
(x) = 1 for almost every

x ∈ E, and almost surely limm→∞ 1Fm
(x) = 1 for almost every x ∈

F \ G. Therefore, almost surely, for almost every x ∈ G,

lim
m→∞

(
1Em

(x)
1

m

m∑
i=1

pZi
(2)fZi

(x|2) + 1Fm
(x)

1

m

m∑
i=1

pZi
(1)fZi

(x|1)
)

= lim
m→∞

(p(2)1Em
(x)f (x|2) + p(1)1Fm

(x)f (x|1))

= lim
m→∞

(p(1)1Em
(x)f (x|1) + p(1)1Fm

(x)f (x|1))

= p(1)f (x|1) = p(2)1E(x)f (x|2) + p(1)1F (x)f (x|1).

Thus, almost surely for almost all x,

lim
m→∞

(
1Em

(x)
1

m

m∑
i=1

pZi
(2)fZi

(x|2) + 1Fm
(x)

1

m

m∑
i=1

pZi
(1)fZi

(x|1)
)

= p(2)1E(x)f (x|2) + p(1)1F (x)f (x|1). (A.4)

Now, since

eRCV(m) =
∫ (

1Em
(x)

1

m

m∑
i=1

pZi
(2)fZi

(x|2)

+1Fm
(x)

1

m

m∑
i=1

pZi
(1)fZi

(x|1)

)
dx,

by the generalized Lebesgue dominated convergence theorem, almost
surely

lim
m→∞

eRCV(m) =
∫

(p(2)1E(x)f (x|2) + p(1)1F (x)f (x|1)) dx = eopt.

Next, write

eCSV(m) = 1

m

m∑
i=1

∫
(pZi

(2)1
iEm

(x)fZi
(x|2)

+pZi
(1)1

iFm
(x)fZi

(x|1))dx,

where iEm = {x : 1
m

∑
j �=i pZj

(1)fZj
(x|1) > 1

m

∑
j �=i pZj

(2)fZj
(x|2)}

and iFm = {x : 1
m

∑
j �=i pZj

(1)fZj
(x|1) ≤ 1

m

∑
j �=i pZj

(2)fZj
(x|2)}.

Then, since Z1, . . . , Zm are iid, we have

E(eCSV(m)) = E

∫
(pZ1 (2)11Em

(x)fZ1 (x|2)

+pZ1 (1)11Fm
(x)fZ1 (x|1))dx

= E

∫
(p(2)11Em

(x)f (x|2) + p(1)11Fm
(x)f (x|1))dx.
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Similar to the proof of Equation (A.4), almost surely for almost every
x

lim
m→∞

(
p(2)11Em

(x)f (x|2) + p(1)11Fm
(x)f (x|1)

)
= p(2)1E(x)f (x|2) + p(1)1F (x)f (x|1).

By dominated convergence theorem, we obtain limm→∞ E(eCSV(m)) =
eopt. Because eCSV(m) ≥ eRCV(m) by Theorem 1, we have

lim
m→∞

E|eCSV(m) − eRCV(m)| = lim
m→∞

E(eCSV(m) − eRCV(m))

= eopt − lim
m→∞

EeRCV(m) = 0,

by the dominated convergence theorem again. Therefore, eCSV(m) −
eRCV(m) converges to zero in probability. Hence, eCSV(m) converges to
eopt in probability. Now if the set {x : p(1)f (x|1) = p(2)f (x|2) �= 0}
is of measure zero, then, almost surely,

eCSV(m) =
∫

E∪(F\G)

(
1

m

m∑
i=1

pZi
(2)1

iEm
(x)fZi

(x|2)

+ 1

m

m∑
i=1

pZi
(1)1

iFm
(x)fZi

(x|1)

)
dx.

Here, we have used the fact that EIG = 0 by Fubini’s theorem where

IG =
∫

G

(
1

m

m∑
i=1

pZi
(2)1

iEm
(x)fZi

(x|2)

+ 1

m

m∑
i=1

pZi
(1)1

iFm
(x)fZi

(x|1)

)
dx,

which implies IG = 0 almost surely. Since almost surely
limm→∞ min1≤i≤m 1

iEm
(x) = 1 for almost every x ∈ E and almost

surely limm→∞ min1≤i≤m 1
iFm

(x) = 1 for almost every x ∈ F \ G, fol-
lowing the same argument in the proof of limm→∞ eRCV(m) = eopt

above, we can obtain that almost surely

lim
m→∞

(
1

m

m∑
i=1

pZi
(2)1

iEm
(x)fZi

(x|2)+ 1

m

m∑
i=1

pZi
(1)1

iFm
(x)fZi

(x|1)

)

= p(2)1E(x)f (x|2) + p(1)1F (x)f (x|1)

for almost every x ∈ E ∪ (F \ G). Hence, by dominated convergence
theorem, eCSV(m) converges to eopt almost surely.

[Received May 2014. Revised December 2014.]
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