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Abstract
Making decisions based on a linear combinationL of

features is of course very common in pattern recognition.
For distinguishing between two hypotheses or classes, the
test is of the formsign(L − τ) for some thresholdτ . Due
mainly to fixingτ , such tests are sensitive to changes in
illumination and other variations in imaging conditions.
We propose a special case, a “self-normalized linear test”
(SNLT), hard-wired to be of the formsign(L1 − L2) with
unit weights. The basic idea is to “normalize”L1, which
involves the usual discriminating features, byL2, which is
composed of non-discriminating features. For a rich vari-
ety of features (e.g., based directly on intensity differences),
SNLTs are largely invariant to illumination and robust to
unexpected background variations. Experiments in face de-
tection are promising: they confirm the expected invariances
and out-perform some previous results in a hierarchical
framework.

1. Introduction
Numerous methods for pattern detection and classifi-

cation, including linear discriminant analysis [5], percep-
trons [6] and support vector machines [14], involve deci-
sions based on linear combinations of the components of a
high-dimensional feature vectorX = (X1, ..., Xd) ∈ <d.
For two classes, denoted{−1, 1}, the classifier or “test” is
then of the formsign(L(X)− τ), whereL is linear. Gener-
ally, the coefficients or weights inL, as well as the threshold
τ , are inferred from training dataL = {(xi, yi)}n

i=1, where
yi denotes the class of examplexi. The features which dom-
inate the decision are those whose probability distribution
differs significantly under the two classes. In some cases
the ultimate predictionf(X) ∈ {−1, 1} may involve a cas-
cade or hierarchy of linear tests, each dedicated to a sub-
problem, for instance a subset of possible object instantia-
tions. In any case, the ultimate goal is to minimize the gen-
eralization errorP (f(X) 6= Y ), whereY is the true class.

The principal limitation may not be the bias introduced
by the simplicity of the decision boundaries. Indeed, this

may be an advantage in applications in whichn is small rel-
ative tod ( “smalln, larged dilemma”). For example, in the
analysis of gene microarray data, simple methods, such as
naive Bayes, perform quite well as compared to more com-
plex ones [13]. Moreover, more complex boundaries can
be obtained within the same framework by mapping into
a larger dimensional space via kernels [2].

In our view, a more severe deficiency is insufficient in-
variance, especially with respect to variations in the imag-
ing conditions, such as changes in illumination and the
appearance of highly-structured clutter. In our own expe-
rience, the performance of object detectors based on lin-
ear tests often degrades under poor contrast (resulting in
missed detections) or in high frequency clutter (resulting
in false detections). One reason for this is thatτ is fixed.
Our objective is to render such linear tests less sensitive to
distortions in the observables. It is doubtful that this can
be entirely accomplished by pre-processing based on esti-
mating imaging conditions. Or that invariance can be en-
tirely learned from training examples. Some hard-wiring
seems preferable. Here, we compareL(X) to a sum ofnon-
discriminatingfeatures rather than to a fixed threshold, ren-
dering the test at least partially invariant to intensity pertur-
bations which degrade all the features in a similar fashion.

Section 2 provides an overview of the method. The de-
sign strategy is described in more detail in§3, followed, in
§4, by an explanation of why SNLTs are invariant to cer-
tain image intensity transformations when certain feature
classes are used.Learningis addressed in§5 - how the de-
sign strategy is implemented in practice using a training set.
Some experiments on face detection are presented in§6 in
order to demonstrate the gains relative to fixed thresholds,
as well as to illustrate SNLT stability. Finally, in§7, we cri-
tique our approach.

2. Overview
We propose a special case of a linear test

f(X) = sign
(∑

αjXj − τ
)

(1)



for which τ = 0 and all the weightsαj = ±1. A self-
normalized linear test(SNLT) is then of the form

f(X) = sign


 ∑

j∈JD

Xj −
∑

j∈JS

Xj


 . (2)

The basic idea is that uninformative features (with sim-
ilar distributions underY = ±1) should not be discarded
as useless but rather kept for normalization – in ef-
fect to replaceτ . Consequently, the two sums in (2) play
distinctly different roles. The setJD captures discrimi-
nating features, typically assuming disparate values un-
der Y = −1 and Y = 1; the setJS is composed of
non-discriminating features, typically assuming simi-
lar values underY = −1 andY = 1. The two setsJD, JS

are chosen to achieve a desired tradeoff between false nega-
tive and false positive errors. In principle, if data distortions
leaving Y unchanged affect the components of the fea-
ture vectorX in a similar way, then the resulting SNLT
can be largely unaffected. For instance, the SNLT is in-
variant to linear contrast changes if the individual features
scale multiplicatively, and is largely insensitive to quanti-
zation.

Features: We consider large families of features, all of
the same basic type and all aimed at detecting local inten-
sity changes in the imageI. Other types of features, or het-
erogeneous collections, could also be envisioned. Our
experiments are based on binary features - logical func-
tions of intensity differencesX = |I(u) − I(v)|, for in-
stance requiring one such difference to be larger than
a group of others; see§4. Such features have the prop-
erty thatX(aI + b) = c(a, b)X(I) (except for quantization
effects; see again§4), rendering any resulting SNLT inde-
pendent ofa andb.

Learning: One goal of learning is to divide the fea-
tures into two pools – those which change consider-
ably and those which are very stable. Since we also want
to avoid redundancy inJD, this is not entirely straightfor-
ward. Low false negative (type I) error (corresponding, for
instance, to few missed detections) is maintained if the fea-
tures inL1 are stochastically larger under classY = 1.
False positive (Type II) error can be controlled by hav-
ing more terms inL1 than inL2, renderingf(X) = 1 un-
likely underY = −1 provided the features inbothsums are
distributed similarly. It is not clear that this type of highly
structured test would emerge naturally from standard learn-
ing devices.

Validation: Experiments in face detection are promising,
confirming the expected invariances. We have used the hi-
erarchical framework described in [4]; roughly speaking, it

involves a coarse-to-fine tree-structured hierarchy of linear
tests, each designed for a different level of generality and
discrimination. Adopting this detection strategy for a par-
ticular choice of features, with everything else fixed, we
compare the performance of fixed (learned) thresholds to
replacing them by (learned) sums of non-distinguished fea-
tures. We suspect the observed improvements would persist
for other recognition strategies based on aggregating evi-
dence from linear tests.

3.. Design

Under certain assumptions, tests of the form (1) are the-
oretically optimal. A prominent example is when the fea-
ture components are binary and conditionally independent,
in which case the likelihood ratio test takes the form (1) for
certain weights (naive Bayes classifier) and, according to
the Neyman-Pearson Lemma, this test minimizes false pos-
itive error for any prescribed false negative rate. However,
such results break down in practice, due not only to the lack
of independence but to the fact thatτ is fixed whereas the
statistics of the features can be very sensitive to common
perturbations of the raw data.

Other design strategies for choosing weights and thresh-
olds are provided by perceptron learning and support vector
machines, extremely well-known methods which will not
be reviewed here; see [3]. Again, despite sound theoretical
considerations about generalization error which motivate
the design, problems arise in uncontrolled imaging condi-
tions. Only with gigantic training sets can the data varia-
tions inevitably encountered be adequately represented.

We chooseJS , JD ⊂ J
.= {1, 2, ..., d} based on statisti-

cal criteria. That is, the features appearing inL1 and inL2

will be characterized by comparing their probability distri-
butions under the two hypothesesY ∈ {−1, 1}.

Let pj(x) andqj(x) denote those distributions:

pj(x) = P (Xj = x|Y = 1)
qj(x) = P (Xj = x|Y = −1).

For the moment we assume these distributions are known;
in practice they are estimated from data, indicated by writ-
ing p̂j , q̂j . Without the loss of generality we can assume that
0 ≤ Xj ≤ 1 and that

µj
.= E(Xj |Y = 1) ≥ E(Xj |Y = −1) .= νj , j ∈ J (3)

by replacingXj by 1−Xj if necessary.
Let δ be some measure of the disparity between two dis-

tributions, perhaps just the difference between the means
|µj − νj | or perhaps a more global metric like Kullback-
Leibler orL1 norm. For binary featuresXj ∈ {0, 1}, let

pj = pj(1) = P (Xj = 1|Y = 1),

qj = qj(1) = P (Xj = 1|Y = −1)



and takeδ(pj , qj) = |pj − qj |.
One simple possibility for choosingJD andJS is to or-

der the (non-negative) valuesµj−νj and put all those above
a certain threshold intoJD and the rest intoJS . However,
we can do better, both in terms of error and computation, by
judicious sampling: We are going to select

JD ⊂ {j : δ(pj , qi) À 0} (4)
JS ⊂ {j : δ(pj , qj) ≈ 0}. (5)

We might wish to choose parameters which quantifyÀ 0
and≈ 0 in order to achieve a desired tradeoff between false
negatives and false positives. In fact, many designs could be
envisioned depending on the nature of the two hypotheses
and the feature set.

In our experiments, we limit the size ofJD and use a
primitive form of boosting (see§5) to minimize redundancy
(i.e., limit dependency) among the features inJD, thereby
increasing efficiency. The selection ofJS is then driven by
minimizing the false negative error rate while at the same
time maximizing|JS |. In cases in whichY = −1 repre-
sents a nonspecific, “background” alternative, and the fea-
tures represent image transitions (see§4), then arranging for
|JD| ¿ |JS | is straightforward (there is generally more
“inactivity” than “activity”), and the false positive rate is
thereby controlled (see§5).

4.. Feature Classes and Invariance

For many features classes, anomalies of the measure-
ment process may, on aggregate, affect the featuresXj in
such a way that the two sums appearing in (2) are similarly
altered, for example their expectations may by reduced by
the same factor.

To be concrete, we focus on photometric variations in the
imaging conditions. Basically, then, we want features with
the property that ifI is transformed toΨ(I), then

Xj(Ψ(I)) = c(Ψ)Xj(I), ∀j ∈ J (6)

for some positive constantc. In this case (2) remains un-
changed:f (X(Ψ(I))) = f (X(I)). Here are some exam-
ples.

1. Linear functions:

X =
∑

i

λiI(ui),
∑

i

λi = 0.

Then clearly (6) holds for linear transformationsΨ :
I → aI + b (a > 0) with c(Ψ) = a.

2. Absolute differences:X = |I(u) − I(v)| for neigh-
boring pixelsu and v, say ‖ u − v ‖= 1. Again
we obtain invariance to linear intensity transforms.
Here, and in the preceding example, we might take
δ(pj , qj) = |µj − νj | (or replace means by medians).

Figure 1. Two examples of comparisons of
differences, designed to detect vertical and
horizontal edges, respectively. In each case,
we demand that the central absolute differ-
ence be larger than the other six.

3. Comparisons of differences:The features used in [1]
and elsewhere are based on comparing one difference
to surrounding differences. This is illustrated in Figure
1. Each feature is of the form

X =
{

1 if ∆0 > max1≤i≤6 ∆i

0 otherwise

Hence there is one feature for each pair of neighbor-
ing vertical, horizontal and diagonal pixels and two per
pair if we retain the polarity of the jump. Again, we
achieve invariance to linear transforms withc(Ψ) ≡ 1.

4. Direct intensity comparisons: Given a small neigh-
borhoodN of pixels, and one distinguished pixelu ∈
N , we define

X =
{

1 if I(u) > maxv∈N I(v)
0 otherwise

Varying choices of the location ofu relative to the
other pixels picks up “edges” of varying orienta-
tions. The resulting SNLTs are, modulo resolution, in-
variant toall monotone increasingΨ.

Note: Features based onstrict inequalities between in-
tensities are only invariant in the continuum. Quanti-
zation may convert inequalities to equalities. For in-
stance, a linear transformation of greyscales may result
in a loss of intensity resolution, in which case we may
haveX(Ψ(I)) = 0 < 1 = X(I) for someX. This is
why, for example, the experiments based on compar-
isons of differences are not strictly invariant.

5.. Learning

Given a family of featuresX = (X1, ..., Xd) and a train-
ing setL = {(xi, yi)}n

i=1, we begin by collecting the em-
pirical statistics for the individual means (or probabilities
in the binary case). Recall these are denoted byµ̂j (under
Y = 1) and ν̂j (underY = −1) and bypj , qj in the bi-
nary case. We are of course primarily interested in thedif-
ferences.



Figure 2. Feature statistics estimated from a face/non-face training set. Top row: The distribution of
means over “objects”( µ̂µµj), “background” ( ν̂ννj) and “object - background” differences ( |µ̂µµj − ν̂ννj|) for a
scalar family. The index sets JD and JS appearing in (2) are drawn from the indicated regions. Bot-
tom row: The same histograms for the binary feature family based on comparisons of differences.

In Figure 2, we show some of the resulting histograms
based on examples of faces (Y = 1) and non-faces (Y =
−1) from a database described in the following section. In
the top row, from left to right, we see the histograms of
{µ̂j , j ∈ J}, {ν̂j , j ∈ J} and{|µ̂j− ν̂j |, j ∈ J} for the fea-
ture family in Example 2 in§4. These histograms are based
on the raw values - prior to standardizing so thatµj ≥ νj

for each feature. Also shown are the ranges of differences
from which JS andJD, the estimated versions ofJS and
JD, will be selected. The bottom row is the same for the bi-
nary family in Example 3 - comparisons of absolute inten-
sity differences.

As indicated in§3, varying objectives could motivate
the selections ofJD andJS . For example, one could cal-
culate the apparent false negative and false positive rates
(i.e. onL) for equality in (5) and (4) based on thresholds
for δ(pj , qj), using the empirical statistics, and strike some
desired balance. We have taken a somewhat different ap-
proach, motivated by i) using binary features; ii) the partic-
ular classification scheme we will use to illustrate the ideas,
which combines a large number of linear tests in a hierar-
chical framework (see§6); and iii) trying to anticipate how
one might estimate and control the real false positive rate
P (f(X) = 1|Y = 1).

We wantJD andJS to have the following properties:

• Negligible false negative error:

P


 ∑

j∈JD

Xj <
∑

j∈JS

Xj | Y = 1


 ≈ 0 (7)

• More “same” than “different” features:|JD| ¿ |JS |.
The motivation is clear: if the second sum is large, and
if the features are distributed roughly the sameunder
Y = −1, then the first sum is unlikely to be larger than
the second underY = −1.

As suggested above, it would be desirable to havesta-
ble frequencies underY = −1, meaningqj ≈ q for all
j ∈ JD ∪ JS , as this would simplify any analysis of the
false positive error. Roughly speaking, the false positive rate
could then be estimated by standard arguments involving bi-
nomial random variables, at least under independence and
asymptotic normality assumptions. As it turns out, due to
the homogeneity of our feature sets, this is roughly satis-
fied, as can be seen from the middle histograms in Figure 2.
However, this only holdsbeforeinversion (Xj → 1 −Xj)
for those case in whichXj = 1 is rarer underY = 1 than
underY = −1; afterwards, the distribution becomes bi-
modal.

In summary, we attempt to makeJS as large as pos-
sible consistent with no misclassifications underY = 1.



Figure 3. Feature histograms with “spreading” for geometric invariance.

To maintain computational efficiency we restrictJD to be
of order100. One could pick the100 features maximizing
|pj−qj |, but such features might be very dependent and spa-
tially concentrated, resulting in a weak and unstable test. In-
stead, we borrow a simple, boosting-type device from [4] in
order to select bothJD andJS . The construction is incre-
mental.

Empirically, the constraint (7) is simply
∑

j∈JD

xi,j ≥
∑

j∈JS

xi,j whenever yi = 1 (8)

wherexi,j is thej’th component of thei’th training sample
xi. The learning algorithm is as follows:

1. SelectJD iteratively. Start withJD = JD(1) = {j}
wherej maximizespj − qj . At each iterationk ≥ 2,
determine the positive training examplesi for which
the current sum,

∑
j∈JD(k−1) xi,j , is minimal. Set

JD(k) = {j}∪JD(k−1) wherej is such thatxi,j = 1
for as many of these examples as possible; in the case
of ties, select the index with largestpj − qj .

2. Stop when|JD| = 100.

3. SelectJS iteratively. Start withJS = JS(1) = {j}
wherej minimizespj − qj . At each iterationk ≥ 2,
choose the indexj with smallest differencepj − qj

which preserves the inequality in(8). Continue adding
features toJS until the inequality can no longer be
maintained.

6.. Application to Face Detection

Variations in photometry can have a significant effect on
the performance of object recognition methods applied to
natural scenes. Consequently, we have chosen to illustrate
our approach in the context of face detection in greyscale
images.

6.1.. Review

Standard face detectors apply a face vs. background clas-
sifier at several scales and at every image location: different

base classifiers, such as neural networks [8], support vec-
tor machines [7], Gaussian models [12] and naive Bayesian
models [10], have been used. Recent work has focused
on serially combining multiple classifiers to yield a faster
and more powerful classifier [4, 11, 15]. Each classifier is
designed for different levels of invariance, discrimination
or computational complexity. Sequential, adaptive testing
yields faster rejection of the background and concentrates
computation on face-like image patches. Most of these clas-
sifiers deal with upright and frontal views of faces. Dealing
with large in-plane and out-of-plane rotations is more diffi-
cult and will not be considered. Finally, most of these meth-
ods use standard image pre-processing techniques to nor-
malize for brightness and contrast variations. Ours does not.

6.2.. Training Sets

The standard ORL database is used to synthesize1600
faces covering different poses. For negative examples, ap-
proximately9000 randomly selected image patches were
downloaded from the WWW, from which we synthesized
about90000 “non-faces.”Recall that we only use the neg-
ative examples to learn binary statistics, namely the{qj}.
In particular, the negative examples are not directly utilized
during the selection of the setsJD andJS .

6.3.. Classifier

The base detector is designed to find all faces with tilt re-
stricted to±20◦ and size (eye-to-eye distance)8 − 16 pix-
els. To detect larger faces, the original image is downsam-
pled before applying the base detector. With four levels of
downsampling we are able to detect faces with sizes from8
to 128 pixels.

We apply the same basic framework as proposed in [4],
where a series of linear classifiers was used in order to grad-
ually reject non-face patterns. The cascade is based on a
coarse-to-fine, tree-structured hierarchy of the pose space.
Each individual classifier is composed of binary edge vari-
ables and is dedicated to faces with poses in a particular
cell. The thresholdτ for each classifier was chosen to yield



Figure 4. The invariance of SNLT’s to image intensity transformations. (a) Ψ(I) = 0.02I2 + 0.5I− 100;
(b) Ψ(I) = 0.001I2 + 0.1I; (c) two-bit greyscale quantization; (d) one-bit greyscale quantization.

an apparent null false negative rate; negative training exam-
ples are not utilized. The same face detection strategy was
employed in [9], except each base classifier is a support vec-
tor machine.

In our cascade of face detectors, each classifier is of
the form (2) and of course negative examples are utilized.
Specifically, the non-face image instances at every cell
(node in the tree hierarchy) are those which have responded
positively to the preceding classifiers. This ensures that in
building the SNLT at each cell we only compete with those
background patches which increasingly resemble faces. Ex-
actly the same learning algorithm (§5) is applied for each
cell; only the training set changes.

6.4.. Image Features

We use the binary family based on comparisons of dif-
ferences (Example 3 in§4). However, for coarse pose cells
(e.g., involving faces with positions spread over an8 × 8
block and a nontrivial range of scales and/or tilts), the ob-
ject feature incidences,{pj}, will be very small. In order to
increase the response rate, and introduce more invariance to
geometricdistortions, we employ the same “spreading” de-
vice as in [1] and [4] in which the original features are re-
placed by disjunctions. In the case of the binary edge detec-
tors based on comparisons of differences, the features are
“spread” along a strip orthogonal to the edge direction: the
spread edgeXs

j = 1 if the original feature is present at any
pixel along the strip.

Due to this ORing operation, all thepj ’s andqj ’s are in-
creased; the net effect is to create features which are more
invariant (appearing on many poses simultaneously) but for
which pj − qj can still be large enough for discrimination.
Photometric invariance is maintained and nothing changes
in the learning algorithm. In Figure 3 we show the same
three histograms as in Figure 2 for strips of lengths one, two
and three combined. The size of the setsJS ranges from ap-
proximately200 (coarse pose cells; high spreading) to600
(fine pose cells; no spreading).

We emphasize that this is but one choice of features that
might demonstrate the utility of SNLTs in classification.
The optimal set of features for detecting faces is a subject
of ongoing research.

6.5.. Results

We have implemented our algorithm in C++ on a stan-
dard Pentium 4 1.8GHz PC, using the CMU+MIT [8, 12]
frontal face test set to estimate performance. As in the cited
work on cascades, processing a320× 240 image takes only
a fraction of a second.

In order to have an exact comparison between fixed (1)
and variable (2) thresholds, we built a fixed-threshold sys-
tem with exactly the same protocol - same training set, fea-
tures, architecture (pose decomposition) and choice of dis-
criminating featuresJD. In addition, we compare the SNLT-
based system with other face detection methods. The re-
sults are in Table 1. We achieve a detection rate of89.6%
with 188 false positives on168 images from the test set.
The SNLT-based system attains both a higher detection rate
and a lower false positive rate when compared to its fixed-
threshold counterpart. Moreover, the results are compara-
ble to other, well-known systems. It should be noted that
the results from each system are reported on slightly differ-
ent subsets of the CMU+MIT test set.

Detection False positives / image
SNLT 89.6% 1.11
Constant Threshold 83.5% 2.33
Viola-Jones1 90.8% 0.73
Rowley-Baluja-Kanade1 89.2% 0.73
Sahbi2 89.6% 0.68

Table 1. Detection rates for various face de-
tection systems

We do not show a sample of face detections in the test set
because the results would look virtually indistinguishable
from those in the cited references. Moreover, the perfor-
mance of the SNLT-system could very likely be improved
by considering a richer training set of faces, employing
bootstrapping to reduce the false positive rate, optimizing
and/or refining the pose decomposition, and other refine-

1 Results reported are on 130 images.
2 Results reported are on 164 images.



Figure 5. Contrast and brightness invariance for image transformations Ψ(I) = aI + b. Top row: Re-
sults using SNLTs. Bottom row: Results using a fixed threshold. Column one: Original image; Col-
umn two: a = 0.4 and b = 0; Column three: a = 0.2 and b = 100.

ments as in the cited references. This was not our primary
objective.

More to the point, in Figure 4 and Figure 5, we show our
ability to detect faces under various image intensity trans-
formations. The improvement over fixed-thresholds is clear-
cut.

7.. Conclusion

Motivated by the lack of robustness of many visual
recognition algorithms based on linear classifiers, we have
proposed replacing fixed thresholds by variable thresholds
based on nondiscriminating features. Normally, such fea-
tures are discarded as worthless. We retain them for the pur-
pose of normalization. This presupposes that all or most of
the features are affected in roughly the same way by vary-
ing imaging conditions. Consequently, the performance of
SNLTs may depend heavily on the nature of the interac-
tion between the features and the expected data transforma-
tions. In the special case of detecting instances from a cat-
egory of visual objects, and hard-wiring invariance to pho-
tometric distortions, SNLTs seem to provide a decided im-
provement over fixed thresholds when the features them-
selves scale appropriately.
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