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Statistical methods for analyzing large-scale biomolecular data are com-
monplace in computational biology. A notable example is phenotype pre-
diction from gene expression data, for instance, detecting human cancers,
differentiating subtypes and predicting clinical outcomes. Still, clinical ap-
plications remain scarce. One reason is that the complexity of the decision
rules that emerge from standard statistical learning impedes biological under-
standing, in particular, any mechanistic interpretation. Here we explore deci-
sion rules for binary classification utilizing only the ordering of expression
among several genes; the basic building blocks are then two-gene expression
comparisons. The simplest example, just one comparison, is the TSP clas-
sifier, which has appeared in a variety of cancer-related discovery studies.
Decision rules based on multiple comparisons can better accommodate class
heterogeneity, and thereby increase accuracy, and might provide a link with
biological mechanism. We consider a general framework (“rank-in-context”)
for designing discriminant functions, including a data-driven selection of the
number and identity of the genes in the support (“context”). We then special-
ize to two examples: voting among several pairs and comparing the median
expression in two groups of genes. Comprehensive experiments assess accu-
racy relative to other, more complex, methods, and reinforce earlier observa-
tions that simple classifiers are competitive.

1. Introduction. Statistical methods for analyzing high-dimensional bio-
molecular data generated with high-throughput technologies permeate the liter-
ature in computational biology. Such analyses have uncovered a great deal of
information about biological processes, such as important mutations and lists of
“marker genes” associated with common diseases [Jones et al. (2008), Thomas
et al. (2007)] and key interactions in transcriptional regulation [Auffray (2007),
Lee et al. (2008)]. Our interest here is learning classifiers that can distinguish be-
tween cellular phenotypes from mRNA transcript levels collected from cells in
assayed tissue, with a primary focus on the structure of the prediction rules. Our
work is motivated by applications to genetic diseases such as cancer, where ma-
lignant phenotypes arise from the net effect of interactions among multiple genes
and other molecular agents within biological networks. Statistical methods can
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enhance our understanding by detecting the presence of disease (e.g., “tumor”
vs “normal”), discriminating among cancer subtypes (e.g., “GIST” vs “LMS” or
“BRCA1 mutation” vs “no BRCA1 mutation”) and predicting clinical outcomes
(e.g., “poor prognosis” vs “good prognosis”).

Whereas the need for statistical methods in biomedicine continues to grow, the
effects on clinical practice of existing classifiers based on gene expression are
widely acknowledged to remain limited; see Altman et al. (2011), Marshall (2011),
Evans et al. (2011) and the discussion in Winslow et al. (2012). One barrier is the
study-to-study diversity in reported prediction accuracies and “signatures” (lists of
discriminating genes). Some of this variation can be attributed to the overfitting
that results from the unfavorable ratio of the sample size to the number of poten-
tial biomarkers, that is, the infamous “small n, large d” dilemma. Typically, the
number of samples (chips, profiles, patients) per class is n = 10–1000, whereas
the number of features (exons, transcripts, genes) is usually d = 1000–50,000; Ta-
ble 1 displays the sample sizes and the numbers of features for twenty-one publicly
available data sets involving two phenotypes.

TABLE 1
The data sets: twenty-one data sets involving two disease-related phenotypes (e.g., cancer vs normal
tissue or two cancer subtypes), illustrating the “small n, large d” situation. The more pathological

phenotype is labeled as class 1 when this information is available

Study Class 0 (size) Class 1 (size) Probes d Reference

D1 Colon Normal (22) Tumor (40) 2000 Alon et al. (1999)
D2 BRCA1 Non-BRCA1 (93) BRCA1 (25) 1658 Lin et al. (2009)
D3 CNS Classic (25) Desmoplastic (9) 7129 Pomeroy et al. (2002)
D4 DLBCL DLBCL (58) FL (19) 7129 Shipp et al. (2002)
D5 Lung Mesothelioma (150) ADCS (31) 12,533 Gordon et al. (2002)
D6 Marfan Normal (41) Marfan (60) 4123 Yao et al. (2007)
D7 Crohn’s Normal (42) Crohn’s (59) 22,283 Burczynski et al. (2006)
D8 Sarcoma GIST (37) LMS (31) 43,931 Price et al. (2007)
D9 Squamous Normal (22) Head–neck (22) 12,625 Kuriakose, Chen et al. (2004)
D10 GCM Normal (90) Tumor (190) 16,063 Ramaswamy et al. (2001)
D11 Leukemia 1 ALL (25) AML (47) 7129 Golub et al. (1999)
D12 Leukemia 2 AML1 (24) AML2 (24) 12,564 Armstrong et al. (2002)
D13 Leukemia 3 ALL(710) AML (501) 19,896 Kohlmann et al. (2008)
D14 Leukemia 4 Normal (138) AML (403) 19,896 Mills et al. (2009)
D15 Prostate 1 Normal (50) Tumor (52) 12,600 Singh et al. (2002)
D16 Prostate 2 Normal (38) Tumor (50) 12,625 Stuart et al. (2004)
D17 Prostate 3 Normal (9) Tumor (24) 12,626 Welsh et al. (2001)
D18 Prostate 4 Normal (25) Primary (65) 12,619 Yao et al. (2004)
D19 Prostate 5 Primary (25) Metastatic (65) 12,558 Yao et al. (2004)
D20 Breast 1 ER-positive (61) ER-negative(36) 16,278 Enerly et al. (2011)
D21 Breast 2 ER-positive (127) ER-negative (80) 9760 Buffa et al. (2011)
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Complex decision rules are obstacles to mature applications. The classifica-
tion methods applied to biological data were usually designed for other purposes,
such as improving statistical learning or applications to vision and speech, with
little emphasis on transparency. Specifically, the rules generated by nearly all stan-
dard, off-the-shelf techniques applied to genomics data, such as neural networks
[Bicciato et al. (2003), Bloom et al. (2004), Khan et al. (2001)], multiple decision
trees [Boulesteix, Tutz and Strimmer (2003), Zhang, Yu and Singer (2003)], sup-
port vector machines [Peng et al. (2003), Yeang et al. (2001)], boosting [Qu et al.
(2002), Dettling and Buhlmann (2003)] and linear discriminant analysis [Guo,
Hastie and Tibshirani (2007), Tibshirani et al. (2002)], usually involve nonlinear
functions of hundreds or thousands of genes, a great many parameters, and are
therefore too complex to characterize mechanistically.

In contrast, follow-up studies, for instance, independent validation or therapeu-
tic development, are usually based on a relatively small number of biomarkers
and usually require an understanding of the role of the genes and gene products
in the context of molecular pathways. Ideally, the decision rules could be inter-
preted mechanistically, for instance, in terms of transcriptional regulation, and be
robust with respect to parameter settings. Consequently, what is notably missing
from the large body of work applying classification methodology to computational
genomics is a solid link with potential mechanisms, which seem to be a neces-
sary condition for “translational medicine” [Winslow et al. (2012)], that is, drug
development and clinical diagnosis.

These translational objectives, and small-sample issues, argue for limiting the
number of parameters and introducing strong constraints. The two principal objec-
tives for the family of classifiers described here are as follows:

• Use elementary and parameter-free building blocks to assemble a classifier
which is determined by its support.

• Demonstrate that such classifiers can be as discriminating as those that emerge
from the most powerful methods in statistical learning.

The building blocks we choose are two-gene comparisons, which we view as
“biological switches” which can be directly related to regulatory “motifs” or other
properties of transcriptional networks. The decision rules are then determined by
expression orderings. However, explicitly connecting statistical classification and
molecular mechanism for particular diseases is a major challenge and is well be-
yond the scope of this paper; by our construction we are anticipating our longer-
term goal of incorporating mechanism by delineating candidate motifs using prior
biological knowledge. Some comments on the relationship between comparisons
and regulation appear in the concluding section.

To meet our second objective, we measure the performance of our comparison-
based classifiers relative to two popular alternatives, namely, support vector ma-
chines and PAM [Tibshirani et al. (2002)], a variant of linear discriminant analysis.
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The “metric” chosen is the estimated error in multiple runs of tenfold cross-
validation for each of the twenty-one real data sets in Table 1. (Computational
cost is not considered; applying any of our comparison-based decision rules to a
new sample is virtually instantaneous.) Whereas a comprehensive simulation study
could be conducted, for example, along the lines of those in Guo, Hastie and Tib-
shirani (2005), Zhang et al. (2006) and Fan and Fan (2008) based on Gaussian
models of microarray data, rather our intention is different: show that even when
the number of parameters is small, in fact, the decision rule is determined by the
support, the accuracy measured by cross-validation on real data is no worse than
with currently available classifiers.

More precisely, all the classifiers studied in this paper are based on a general
rank discriminant g(X;�), a real-valued function on the ranks of X over a (possi-
bly ordered) subset of genes �, called the context of the classifier. We are search-
ing for characteristic perturbations in this ordering from one phenotype to another.
The TSP classifier is the simplest example (see Section 2), and the decision rule is
illustrated in Figure 1. This data set has expression profiles for two kinds of gas-
trointestinal cancer (gastrointestinal stromal-GIST, leiomyosarcoma-LMS) which

FIG. 1. Results of three rank-based classifiers for differentiating two cancer subtypes, GIST and
LMS. The training set consists of 37 GIST samples and 31 LMS samples (separated by the vertical
dashed line); each sample provides measurements for 43,931 transcripts. TSP: expression values for
the two genes selected by the TSP algorithm. KTSP: the number of votes for each class among the
K = 10 pairs of genes selected by the KTSP algorithm. TSM: median expressions of two sets of
genes selected by the TSM algorithm.
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are difficult to distinguish clinically but require very different treatments [Price
et al. (2007)]. Each point on the x-axis corresponds to a sample, and the verti-
cal dashed line separates the two phenotypes. The y-axis represents expression; as
seen, the “reversal” of the ordering of the expressions of the two genes identifies
the phenotype except in two samples.

Evidently, a great deal of information may be lost by converting to ranks,
particularly if the expression values are high resolution. But there are techni-
cal advantages to basing prediction on ranks, including reducing study-to-study
variations due to data normalization and preprocessing. Rank-based methods are
evidently invariant to general monotone transformations of the original expres-
sion values, such as the widely-used quantile normalization [Bloated, Irizarry and
Speed (2004)]. Thus, methods based on ranks can combine inter-study microarray
data without the need to perform data normalization, thereby increasing sample
size.

However, our principal motivation is complexity reduction: severely limiting
the number of variables and parameters, and in fact introducing what we call rank-
in-context (RIC) discriminants which depend on the training data only through the
context. The classifier f is then defined by thresholding g. This implies that, given
a context �, the RIC classifier corresponds to a fixed decision boundary, in the
sense that it does not depend on the training data. This sufficiency property helps
to reduce variance by rendering the classifiers relatively insensitive to small dis-
turbances to the ranks of the training data and is therefore especially suitable to
small-sample settings. Naturally, the performance critically depends on the appro-
priate choice of �. We propose a simple yet powerful procedure to select � from
the training data, partly inspired by the principle of analysis of variance and in-
volving the sample means and sample variances of the empirical distribution of g

under the two classes. In particular, we do not base the choice directly on mini-
mizing error.

We consider two examples of the general framework. The first is a new method
for learning the context of KTSP, a previous extension of TSP to a variable number
of pairs. The decision rule of the KTSP classifier is the majority vote among the
top k pairs of genes, illustrated in Figure 1 for k = 10 for the same data set as
above. In previous statistical and applied work [Tan et al. (2005)], the parameter K

(the number of comparisons) was determined by an inner loop of cross-validation,
which is subject to overfitting with small samples. We also propose comparing the
median of expression between two sets of genes; this Top-Scoring Median (TSM)
rule is also illustrated in Figure 1. As can be seen, the difference of the medians
generally has a larger “margin” than in the special case of singleton sets, that is,
TSP. A summary of all the methods is given in Table 2.

After reviewing related work in the following section, in Section 3 we present
the classification scenario, propose our general statistical framework and focus on
two examples: KTSP and TSM. The experimental results are in Section 4, where
comparisons are drawn, and we conclude with some discussion about the underly-
ing biology in Section 5.
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TABLE 2
Summary of rank discriminants. First column: the rank-based classifiers considered in this paper. Second column: the structure of the context �k , the

genes appearing in the classifier; for kTSP and TSM,�k contains 2k genes. Third column: the form of the rank discriminant; the classifier is
f (X) = I (g(X) > 0). Fourth column: the selection of the context from training data. For a fixed k we select �k to maximize δ̂, and then choose k to

maximize δ̂ normalized by σ̂

Parameters Discriminant Parameter selection

General (�k, k) g(X;�k)

�k ⊂ {1, . . . , d} δ̂(�k) = Ê(g(X;�k)|Y = 1) − Ê(g(X;�k)|Y = 0) �∗
k = arg max�k

δ̂(�k)

σ̂ (�k) =
√

V̂ar(g|Y = 0) + V̂ar(g|Y = 1) k∗ = arg maxk
δ̂(�∗

k)

σ̂ (�∗
k )

Examples

TSP � = (i, j) gTSP = I (Xi < Xj ) − 1
2 �∗ = arg max(i,j)∈� ŝij

ŝij = P(Xi < Xj |Y = 1) − P(Xi < Xj |Y = 0)

KTSP �k = {i1, j1, . . . , ik, jk} gKTSP = ∑k
r=1[I (Xir < Xjr

) − 1
2 ] �∗

k = arg max�k

∑k
r=1 ŝir jr

TSM �k = G+
k ∪ G−

k gTSM = med
j∈G+

k
Rj − med

i∈G−
k

Ri

G−
k = {i1, . . . , ik} Ri : rank of gene i in G+

k ∪ G−
k �∗

k ≈ arg max�k

∑
i∈G−

k ,j∈G+
k

ŝij

G+
k = {j1, . . . , jk}
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2. Previous and related work. Our work builds on previous studies analyz-
ing transcriptomic data solely based on the relative expression among a small num-
ber of transcripts. The simplest example, the Top-Scoring Pair (TSP) classifier,
was introduced in Geman et al. (2004) and is based on two genes. Various ex-
tensions and illustrations appeared in Xu et al. (2005), Lin et al. (2009) and Tan
et al. (2005). Applications to phenotype classification include differentiating be-
tween stomach cancers [Price et al. (2007)], predicting treatment response in breast
cancer [Weichselbaum et al. (2008)] and acute myeloid leukemia [Raponi et al.
(2008)], detecting BRCA1 mutations [Lin et al. (2009)], grading prostate cancers
[Zhao, Logothetis and Gorlov (2010)] and separating diverse human pathologies
assayed through blood-borne leukocytes [Edelman et al. (2009)].

In Geman et al. (2004) and subsequent papers about TSP, the discriminating
power of each pair of genes i, j was measured by the absolute difference between
the probabilities of the event that gene i is expressed more than gene j in the two
classes. These probabilities were estimated from training data and (binary) clas-
sification resulted from voting among all top-scoring pairs. In Xu et al. (2005) a
secondary score was introduced which provides a unique top-scoring pair. In addi-
tion, voting was extended to the k highest-scoring pairs of genes. The motivation
for this KTSP classifier and other extensions [Tan et al. (2005), Anderson et al.
(2007), Xu, Geman and Winslow (2007)] is that more genes may be needed to de-
tect cancer pathogenesis, especially if the principle objective is to characterize as
well as recognize the process. Finally, in a precursor to the work here [Xu, Geman
and Winslow (2007)], the two genes in TSP were replaced by two equally-sized
sets of genes and the average ranks were compared. Since the direct extension
of TSP score maximization was computationally impossible, and likely to badly
overfit the data, the sets were selected by splitting top-scoring pairs and repeated
random sampling. Although ad hoc, this process further demonstrated the discrim-
inating power of rank statistics for microarray data.

Finally, there is some related work about ratios of concentrations (which are nat-
ural in chemical terms) for diagnosis and prognosis. That work is not rank-based
but retains invariance to scaling. Golub et al. (1999) distinguished between malig-
nant pleural mesothelioma (MPM) and adenocarcinoma (ADCA) of the lung by
combining multiple ratios into a single diagnostic tool, and Ma et al. (2004) found
that a two-gene expression ratio derived from a genome-wide, oligonucleotide mi-
croarray analysis of estrogen receptor (ER)-positive, invasive breast cancers pre-
dicts tumor relapse and survival in patients treated with tamoxifen, which is crucial
for early-stage breast cancer management.

3. Rank-in-context classification. In this section we introduce a general
framework for rank-based classifiers using comparisons among a limited number
of gene expressions, called the context. In addition, we describe a general method
to select the context, which is inspired by the analysis of variance paradigm of
classical statistics. These classifiers have the RIC property that they depend on the
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sample training data solely through the context selection; in other words, given
the context, the classifiers have a fixed decision boundary and do not depend on
any further learning from the training data. For example, as will be seen in later
sections, the Top-Scoring Pair (TSP) classifier is RIC. Once a pair of genes (i.e.,
the context) is specified, the TSP decision boundary is fixed and corresponds to
a 45-degree line going through the origin in the feature space defined by the two
genes. This property confers to RIC classifiers a minimal-training property, which
makes them insensitive to small disturbances to the ranks of the training data,
reducing variance and overfitting, and rendering them especially suitable to the
n � d settings illustrated in Table 1. We will demonstrate the general RIC frame-
work with two specific examples, namely, the previously introduced KTSP classi-
fier based on majority voting among comparisons [Tan et al. (2005)], as well as a
new classifier based on the comparison of the medians, the Top-Scoring Medians
(TSM) classifier.

3.1. RIC discriminant. Let X = (X1,X2, . . . ,Xd) denote the expression val-
ues of d genes on an expression microarray. Our objective is to use X to distinguish
between two conditions or phenotypes for the cells in the assayed tissue, denoted
Y = 0 and Y = 1. A classifier f associates a label f (X) ∈ {0,1} with a given ex-
pression vector X. Practical classifiers are inferred from training data, consisting
of i.i.d. pairs Sn = {(X(1), Y (1)), . . . , (X(n), Y (n))}.

The classifiers we consider in this paper are all defined in terms of a general
rank-in-context discriminant g(X;�(Sn)), which is defined as a real-valued func-
tion on the ranks of X over a subset of genes �(Sn) ⊂ {1, . . . , d}, which is deter-
mined by the training data Sn and is called the context of the classifier (the order of
indices in the context may matter). The corresponding RIC classifier f is defined
by

f
(
X;�(Sn)

) = I
(
g
(
X;�(Sn)

)
> t

) =
{

1, g
(
X;�(Sn)

)
> t ,

0, otherwise,
(1)

where I(E) denotes the indicator variable of event E. The threshold parameter t

can be adjusted to achieve a desired specificity and sensitivity (see Section 3.4
below); otherwise, one usually sets t = 0. For simplicity we will write � instead
of �(Sn), with the implicit understanding that in RIC classification � is selected
from the training data Sn.

We will consider two families of RIC classifiers. The first example is the k-Top
Scoring Pairs (KTSP) classifier, which is a majority-voting rule among k pairs of
genes [Tan et al. (2005)]; KTSP was the winning entry of the International Confer-
ence in Machine Learning and Applications (ICMLA) 2008 challenge for micro-
array classification [Geman et al. (2008)]. Here, the context is partitioned into a
set of gene pairs � = {(i1, j1), . . . , (ik, jk)}, where k is a positive odd integer, in
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such a way that all pairs are disjoint, that is, all 2k genes are distinct. The RIC
discriminant is given by

gKTSP
(
X; (i1, j1), . . . , (ik, jk)

) =
k∑

r=1

[
I(Xir < Xjr ) − 1

2

]
.(2)

This KTSP RIC discriminant simply counts positive and negative “votes” in favor
of ascending or descending ranks, respectively. The KTSP classifier is given by (1),
with t = 0, which yields

fKTSP
(
X; (i1, j1), . . . , (ik, jk)

) = I

(
k∑

r=1

I(Xir < Xjr ) >
k

2

)
.(3)

The KTSP classifier is thus a majority-voting rule: it assigns label 1 to the expres-
sion profile if the number of ascending ranks exceeds the number of descending
ranks in the context. The choice of odd k avoids the possibility of a tie in the vote.
If k = 1, then the KTSP classifier reduces to fTSP(X; (i, j)) = I(Xi < Xj), the
Top-Scoring Pair (TSP) classifier [Geman et al. (2004)].

The second example of an RIC classifier we propose is the Top Scoring Median
(TSM) classifier, which compares the median rank of two sets of genes. The me-
dian rank has the advantage that for any individual sample the median is the value
of one of the genes. Hence, in this sense, a comparison of medians for a given
sample is equivalent to the comparison of two-gene expressions, as in the TSP de-
cision rule. Here, the context is partitioned into two sets of genes, � = {G+

k ,G−
k },

such that |G+
k | = |G−

k | = k, where k is again a positive odd integer, and G+
k and

G−
k are disjoint, that is, all 2k genes are distinct. Let Ri be the rank of Xi in the

context � = G+
k ∪ G−

k , such that Ri = j if Xi is the j th smallest value among the
gene expression values indexed by �. The RIC discriminant is given by

gTSM
(
X;G+

k ,G−
k

) = med
j∈G+

k

Rj − med
i∈G−

k

Ri,(4)

where “med” denotes the median operator. The TSM classifier is then given by (1),
with t = 0, which yields

fTSM
(
X;G+

k ,G−
k

) = I
(

med
j∈G+

k

Rj > med
i∈G−

k

Ri

)
.(5)

Therefore, the TSM classifier outputs 1 if the median of ranks in G+
k exceeds the

median of ranks in G−
k , and 0 otherwise. Notice that this is equivalent to com-

paring the medians of the raw expression values directly. We remark that an obvi-
ous variation would be to compare the average rank rather than the median rank,
which corresponds to the “TSPG” approach defined in Xu, Geman and Winslow
(2007), except that in that study, the context for TSPG was selected by splitting a
fixed number of TSPs. We observed that the performances of the mean-rank and
median-rank classifiers are similar, with a slight superiority of the median-rank
(data not shown).
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3.2. Criterion for context selection. The performance of RIC classifiers criti-
cally depends on the appropriate choice of the context � ⊂ {1, . . . , d}. We propose
a simple yet powerful procedure to select � from the training data Sn. To moti-
vate the proposed criterion, first note that a necessary condition for the context
� to yield a good classifier is that the discriminant g(X;�) has sufficiently dis-
tinct distributions under Y = 1 and Y = 0. This can be expressed by requiring that
the difference between the expected values of g(X;�) between the populations,
namely,

δ(�) = E
[
g(X;�)|Y = 1, Sn

] − E
[
g(X;�)|Y = 0, Sn

]
,(6)

be maximized. Notice that this maximization is with respect to � alone; g is fixed
and chosen a priori. In practice, one employs the maximum-likelihood empirical
criterion

δ̂(�) = Ê
[
g(X;�)|Y = 1, Sn

] − Ê
[
g(X;�)|Y = 0, Sn

]
,(7)

where

Ê
[
g(X;�)|Y = c, Sn

] =
∑n

i=1 g(X(i);�)I(Y (i) = c)∑n
i=1 I(Y (i) = c)

,(8)

for c = 0,1.
In the case of KTSP, the criterion in (6) becomes

δKTSP
(
(i1, j1), . . . , (ik, jk)

) =
k∑

r=1

sir jr ,(9)

where the pairwise score sij for the pair of genes (i, j) is defined as

sij = P(Xi < Xj |Y = 1) − P(Xi < Xj |Y = 0).(10)

Notice that if the pair of random variables (Xi,Xj ) has a continuous distribution,
so that P(Xi = Xj) = 0, then sij = −sji . In this case Xi < Xj can be replaced by
Xi ≤ Xj in sij in (10).

The empirical criterion δ̂KTSP((i1, j1), . . . , (ik, jk)) [cf. equation (7)] is obtained
by substituting in (9) the empirical pairwise scores

ŝij = P̂ (Xi < Xj |Y = 1) − P̂ (Xi < Xj |Y = 0).(11)

Here the empirical probabilities are defined by P̂ (Xi < Xj |Y = c) = Ê[I(Xi <

Xj)|Y = c], for c = 0,1, where the operator Ê is defined in (8).
For TSM, the criterion in (6) is given by

δTSM
(
G+

k ,G−
k

)
(12)

= E
[

med
j∈G+

k

Rj − med
i∈G−

k

Ri

∣∣Y = 1
]
− E

[
med
j∈G+

k

Rj − med
i∈G−

k

Ri

∣∣Y = 0
]
.
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Proposition S1 in Supplement A [Afsari, Braga-Neto and Geman (2014a)] shows
that, under some assumptions,

δTSM
(
G+

k ,G−
k

) = 2

k

∑
i∈G−

k ,j∈G+
k

sij ,(13)

where sij is defined in (10).
The difference between the two criteria (9) for KTSP and (13) for TSM for se-

lecting the context is that the former involves scores for k expression comparisons
and the latter involves k2 comparisons since each gene i ∈ G−

k is paired with each
gene j ∈ G+

k . Moreover, using the estimated solution to maximizing (9) (see be-
low) to construct G−

k and G+
k by putting the first gene from each pair into one and

the second gene from each pair into the other does not work as well in maximiz-
ing (13) as the algorithms described below.

The distributional smoothness conditions Proposition S1 are justified if k is not
too large (see Supplement A [Afsari, Braga-Neto and Geman (2014a)]). Finally,
the empirical criterion δ̂TSM(G+

k ,G−
k ) can be calculated by substituting in (13) the

empirical pairwise scores ŝij defined in (11).

3.3. Maximization of the criterion. Maximization of (6) or (7) works well as
long as the size of the context |�|, that is, the number of context genes, is kept
fixed, because the criterion tends to be monotonically increasing with |�|, which
complicates selection. We address this problem by proposing a modified criterion,
which is partly inspired by the principle of analysis of variance in classical statis-
tics. This modified criterion penalizes the addition of more genes to the context by
requiring that the variance of g(X;�) within the populations be minimized. The
latter is given by

σ̂ (�) =
√

V̂ar
(
g(X;�)|Y = 0, Sn

) + V̂ar
(
g(X;�)|Y = 1, Sn

)
,(14)

where V̂ar is the maximum-likelihood estimator of the variance,

V̂ar
(
g(X;�)|Y = c, Sn

)
=

∑n
i=1(g(X(i);�) − Ê[g(X;�)|Y = c, Sn])2I(Y (i) = c)∑n

i=1 I(Y (i) = c)
,

for c = 0,1. The modified criterion to be maximized is

τ̂ (�) = δ̂(�)

σ̂ (�)
.(15)

The statistic τ̂ (�) resembles the Welch two-sample t-test statistic of classical hy-
pothesis testing [Casella and Berger (2002)].
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Direct maximization of (7) or (15) is in general a hard computational problem
for the numbers of genes typically encountered in expression data. We propose
instead a greedy procedure. Assuming that a predefined range of values � for the
context size |�| is given, the procedure is as follows:

(1) For each value of k ∈ �, an optimal context �∗
k is chosen that maximizes (7)

among all contexts �k containing k genes:

�∗
k = arg max|�|=k

δ̂(�).

(2) An optimal value k∗ is chosen that maximizes (15) among all contexts
{�∗

k |k ∈ �} obtained in the previous step:

k∗ = arg max
k∈�

τ̂
(
�∗

k

)
.

For KTSP, the maximization in step (1) of the previous context selection proce-
dure becomes{(

i∗1 , j∗
1
)
, . . . ,

(
i∗k , j∗

k

)} = arg max{(i1,j1),...,(ik,jk)}
δ̂KTSP

(
(i1, j1), . . . , (ik, jk)

)
(16)

= arg max{(i1,j1),...,(ik,jk)}

k∑
r=1

ŝir jr .

We propose a greedy approach to this maximization problem: initialize the list
with the top-scoring pair of genes, then keep adding pairs to the list whose genes
have not appeared so far [ties are broken by the secondary score proposed in Xu
et al. (2005)]. This process is repeated until k pairs are chosen and corresponds
essentially to the same method that was proposed, for fixed k, in the original paper
on KTSP [Tan et al. (2005)]. Thus, the previously proposed heuristic has a justi-
fication in terms of maximizing the separation between the rank discriminant (2)
across the classes.

To obtain the optimal value k∗, one applies step (2) of the context selection
procedure, with a range of values k ∈ � = {3,5, . . . ,K}, for odd K (k = 1 can be
added if 1-TSP is considered). Note that here

σ̂KTSP(�)

(17)
=

√√√√V̂ar

(
k∑

r=1

[
I(Xi∗r < Xj∗

r
)
]∣∣∣∣Y = 0

)
+ V̂ar

(
k∑

r=1

[
I(Xi∗r < Xj∗

r
)
]∣∣∣∣Y = 1

)
.

Therefore, the optimal value of k is selected by

k∗ = arg max
k=3,5,...,K

τ̂KTSP
((

i∗1 , j∗
1
)
, . . . ,

(
i∗k , j∗

k

))
,(18)
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where

τ̂KTSP
((

i∗1 , j∗
1
)
, . . . ,

(
i∗k , j∗

k

))
= δ̂KTSP((i∗1 , j∗

1 ), . . . , (i∗k , j∗
k ))

σ̂KTSP((i∗1 , j∗
1 ), . . . , (i∗k , j∗

k ))
(19)

=
∑k

r=1 ŝi∗r j∗
r√

V̂ar(
∑k

r=1[I(Xi∗r < Xj∗
r
)]|Y = 0) + V̂ar(

∑k
r=1[I(Xi∗r < Xj∗

r
)]|Y = 1)

.

Finally, the optimal context is then given by �∗ = {(i∗1 , j∗
1 ), . . . , (i∗k∗, j∗

k∗)}.
For TSM, the maximization in step (1) of the context selection procedure can be

written as(
G

+,∗
k ,G

−,∗
k

) = arg max
(G+

k ,G−
k )

δ̂TSM
(
G+

k ,G−
k

) = arg max
(G+

k ,G−
k )

∑
i∈G−

k ,j∈G+
k

ŝij .(20)

Finding the global maximum in (20) is not feasible in general. We consider a
suboptimal strategy for accomplishing this task: sequentially construct the context
by adding two genes at a time. Start by selecting the TSP pair i, j and setting
G−

1 = {i} and G+
1 = {j}. Then select the pair of genes i ′, j ′ distinct from i, j such

that the sum of scores is maximized by G−
2 = {i, i′} and G+

2 = {j, j ′}, that is,
δ̂TSM(G+

k ,G−
k ) is maximized over all sets G+

k ,G−
k of size two, assuming i ∈ G−

k

and j ∈ G+
k . This involves computing three new scores. Proceed in this way until

k pairs have been selected.
To obtain the optimal value k∗, one applies step (2) of the context selection

procedure, with a range of values k ∈ � = {3,5, . . . ,K}, for odd K (the choice
of � is dictated by the facts that k = 1 reduces to 1-TSP, whereas Proposition S1
does not hold for even k):

k∗ = arg max
k=3,5,...,K

τ̂TSM
(
G

+,∗
k ,G

−,∗
k

)
,

where

τ̂TSM
(
G

+,∗
k ,G

−,∗
k

)
= δ̂TSM(G

+,∗
k ,G

−,∗
k )

σ̂TSM(G
+,∗
k ,G

−,∗
k )

=
(
Ê

[
med

j∈G
+,∗
k

Rj − med
i∈G

−,∗
k

Ri

∣∣Y = 1
]
− Ê

[
med

j∈G
+,∗
k

Rj − med
i∈G

−,∗
k

Ri

∣∣Y = 0
])

(21)

/(
V̂ar

(
med

j∈G
+,∗
k

Rj − med
i∈G

−,∗
k

Ri

∣∣Y = 0
)

+ V̂ar
(

med
j∈G

+,∗
k

Rj − med
i∈G

−,∗
k

Ri

∣∣Y = 1
))1/2

.
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Notice that τ̂TSM is defined directly by replacing (4) into (7) and (14), and then
using (15). In particular, it does not use the approximation in (13). Finally, the
optimal context is given by �∗ = (G

+,∗
k∗ ,G

−,∗
k∗ ).

For both KTSP and TSM classifiers, the step-wise process to perform the maxi-
mization of the criterion [cf. equations (16) and (20)] does not need to be restarted
as k increases, since the suboptimal contexts are nested [by contrast, the method in
Tan et al. (2005) employed cross-validation to choose k∗]. The detailed context se-
lection procedure for KTSP and TSM classifiers is given in Algorithms S1 and S2
in Supplement C [Afsari, Braga-Neto and Geman (2014c)].

3.4. Error rates. In this section we discuss the choice of the threshold t used
in (1). The sensitivity is defined as P(f (X) = 1|Y = 1) and the specificity is de-
fined as P(f (X) = 0|Y = 0). We are interested in controlling both, but trade-offs
are inevitable. The choice of which phenotype to designate as 1 is application-
dependent; often sensitivity is relative to the more malignant one and this is the
way we have assigned labels to the phenotypes. A given application may call for
emphasizing sensitivity at the expense of specificity or vice versa. For example, in
detecting BRCA1 mutations or with aggressive diseases such as pancreatic cancer,
high sensitivity is important, whereas for more common and less aggressive can-
cers, such as prostate, it may be preferable to limit the number of false alarms and
achieve high specificity. In principle, selecting the appropriate threshold t in (1)
allows one to achieve a desired trade-off. (A disadvantage of TSP is the lack of a
discriminant, and thus a procedure to adjust sensitivity and specificity.) It should be
noted, however, that in practice estimating the threshold on the training data can
be difficult; moreover, introducing a nonzero threshold makes the decision rule
somewhat more difficult to interpret. As an example, Figure 2 displays the ROC
curve of the TSM classifier for the BRCA1 and Prostate 4 studies, together with
thresholds achieving hypothetically desired scenarios.

4. Experimental results. A summary of the rank-based discriminants devel-
oped in the preceding sections is given in Table 2. We learned each discriminant for
each of the data sets listed in Table 1. Among an abundance of proposed methods
for high-dimensional data classification [e.g., Bradley and Mangasarian (1998),
Zhang et al. (2006), Marron, Todd and Ahn (2007)], we chose two of the most ef-
fective and popular choices for predicting phenotypes from expression data: PAM
[Tibshirani et al. (2002)], which is a form of LDA, and SVM-RFE [Guyon et al.
(2002)], which is a form of linear SVM.

Generalization errors are estimated with cross-validation, specifically averag-
ing the results of ten repetitions of 10-fold CV, as recommended in Braga-Neto
and Dougherty (2004) and Hastie, Tibshirani and Friedman (2001). Despite the in-
accuracy of small-sample cross-validation estimates [Braga-Neto and Dougherty
(2004)], 10-fold CV suffices to obtain the broad perspective on relative perfor-
mance across many different data sets.
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FIG. 2. ROC curves for TSM. Left: BRCA1 data. With the indicated threshold, we can achieve
sensitivity around 0.9 at the expense of specificity around 0.6. Right: Prostate 4 data. The given
threshold reaches 0.88 specificity at the expense of sensitivity around 0.55.

The protocols for training (including parameter selection) are given below. To
reduce computation, we filter the whole gene pool without using the class labels
before selecting the context for rank discriminants (TSP, KTSP and TSM). Al-
though a variety of filtering methods exist in the literature, such as PAM [Tibshirani
et al. (2002)], SIS [Fan and Lv (2008)], Dantzig selector [Candes and Tao (2007)]
and the Wilcoxon-rank test [Wilcoxon (1945)], we simply use an average signal
filter: select the 4000 genes with highest mean rank (across both classes). In par-
ticular, there is no effort to detect “differentially expressed” genes. In this way we
minimize the influence of the filtering method in assessing the performance of rank
discriminants:

• TSP: The single pair maximizing sij over all pairs in the 4000 filtered genes,
breaking scoring ties if necessary with the secondary score proposed in Xu et al.
(2005).

• KTSP: The k disjoint pairs maximizing sij over all pairs in the 4000 filtered
genes with the same tie-breaking method. The number of pairs k is determined
via Algorithm S1, within the range k = 3,5, . . . ,9, avoiding ties in voting. No-
tice that k = 1 is excluded so that KTSP cannot reduce to TSP. We tried also
k = 3,5, . . . ,49 and the cross-validated accuracies changed insignificantly.

• TSM: The context is chosen from the top 4000 genes by the greedy selection
procedure described in Algorithm S2. The size of the two sets for computing the
median rank is selected in the range k = 3,5,7,9 (providing a unique median
and thereby rendering Proposition S1 applicable). We also tried k = 3,5, . . . ,49
and again the changes in the cross-validated accuracies were insignificant.



1484 B. AFSARI, U. M. BRAGA-NETO AND D. GEMAN

• SVM-RFE: We learned two linear SVMs using SVM-RFE: one with ten genes
and one with a hundred genes. No filtering was applied, since SVM-RFE itself
does that. Since we found that the choice of the slack variable barely changes
the results, we fix C = 0.1. (In fact, the data are linearly separable in nearly all
loops.) Only the results for SVM-RFE with a hundred genes are shown since it
was almost 3% better than with ten genes.

• PAM: We use the automatic filtering mechanism provided by Tibshirani (2011).
The prior class likelihoods were set to 0.5 and all other parameters were set
to default values. The most important parameter is the threshold; the automatic
one chosen by the program results in relatively lower accuracy than the other
methods (84.00%) on average. Fixing the threshold and choosing the best one
over all data sets only increases the accuracy by one percent. Instead, for each
data set and each threshold, we estimated the cross-validated accuracy for PAM
and report the accuracy of the best threshold for that data set.

Table 3 shows the performance estimates of the classifiers across 21 data sets.
In addition, Figures S1 and S2 in Supplement B [Afsari, Braga-Neto and Ge-
man (2014b)] display the results in box plot format. The averages are as follows:

TABLE 3
Sensitivity/specificity for different classification methods. Overall accuracy is calculated as the

average of sensitivity and specificity

Data set TSP TSM KTSP SVM PAM

Colon 88/88 86/88 87/86 87/73 83/81
BRCA 1 71/75 90/75 88/77 68/88 39/82
CNS 41/79 81/88 67/93 52/86 77/79
DLBCL 98/97 96/95 96/88 97/91 72/100
Lung 92/97 97/99 94/100 95/100 97/100
Marfan 82/93 89/90 88/96 99/93 88/87
Crohn’s 89/90 92/91 92/96 100/100 93/98
Sarcoma 83/78 88/89 93/91 97/94 93/100
Squamous 89/88 88/85 99/92 94/95 94/95
GCM 81/73 88/77 90/75 94/80 95/94
Leukemia 1 90/85 97/94 97/93 98/97 95/89
Leukemia 2 96/96 100/93 100/96 100/96 73/88
Leukemia 3 98/98 97/99 97/98 100/100 96/99
Leukemia 4 92/94 95/98 96/97 99/97 77/92
Prostate 1 95/93 89/96 90/95 91/95 89/91
Prostate 2 68/68 76/79 76/83 68/79 77/74
Prostate 3 97/79 99/90 99/83 99/100 98/100
Prostate 4 77/61 87/70 86/79 92/62 66/85
Prostate 5 97/99 97/98 95/99 100/99 99/100
Breast 1 82/90 82/91 85/91 77/88 95/98
Breast 2 83/82 73/89 75/87 71/86 86/88
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TSP (85.59%), KTSP (90.07%), TSM (88.97%), SVM-RFE (89.92%) and PAM
(88.19%). The differences in the averages among methods do not appear substan-
tial, with the possible exception of TSP, which lags behind the others.

There are, however, clearly significant variations in performance within individ-
ual data sets. In order to examine these variations at a finer scale, possibly revealing
trends to support practical recommendations, recall that for each data set and each
method, we did ten repetitions of tenfold cross-validation, resulting in one hundred
trained classifiers and estimated rates (on the left-out subsets), which were aver-
aged to provide a single cross-validated classification rate. The notch-boxes for
each data set and method are plotted in Figures S1 and S2 (Supplement B [Afsari,
Braga-Neto and Geman (2014b)]). As is commonly done, any two methods will
be declared to be “tied” on a given data set if the notches overlap; otherwise, that
is, if the notches are disjoint, the “winner” is taken to be the one with the larger
median.

First, using the “notch test” to compare the three RIC classifiers, KTSP slightly
outperforms TSM, which in turn outperforms TSP. More specifically, KTSP has
accuracy superior to both others on ten data sets. In terms of KTSP vs TSM, KTSP
outperforms on three data sets, vice versa on one data set and they tie on all others.
Moreover, TSM outperforms TSP on nine data sets and vice versa on two data sets.
As a result, if accuracy is the dominant concern, we recommend KTSP among the
RIC classifiers, whereas if simplicity, transparency and links to biological mecha-
nisms are important, one might prefer TSP. Comparisons with non-RIC methods
(see below) are based on KTSP, although substituting TSM does not lead to appre-
ciably different conclusions.

Second, SVM performs better than PAM on six data sets and PAM on three data
sets. Hence, in the remainder of this section we will compare KTSP with SVM.
We emphasize that the comparison between PAM and SVM is on our particular
data sets, using our particular measures of performance, namely, cross-validation
to estimate accuracy and the notch test for pairwise comparisons. Results on other
data sets or in other conditions may differ.

Third, whereas the overall performance statistics for KTSP and SVM are almost
identical, trends do emerge based on sample size, which is obviously an important
parameter and especially useful here because it varies considerably among our
data sets (Table 1). To avoid fine-tuning, we only consider a coarse and somewhat
arbitrary quantization into three categories: “small,” “medium” and “large” data
sets, defined, respectively, by fewer than 100 (total) samples (twelve data sets),
100–200 samples (five data sets) and more than 200 samples (four data sets). On
small data sets, KTSP outperforms SVM on four data sets and never vice versa; for
medium data sets, each outperforms the other on one of the five data sets; and SVM
outperforms KTSP on three out of four large data sets and never vice versa.

Another criterion is sparsity: the number of genes used by TSP is always two
and by SVM-RFE is always one hundred. Averaged across all data sets and loops
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of cross-validation, KTSP uses 12.5 genes, TSM uses 10.16 genes, and PAM uses
5771 genes.

Finally, we performed an experiment to roughly gauge the variability in select-
ing the genes in the support of the various classifiers. Taking advantage of the fact
that we train 100 different classifiers for each method and data set, each time with
approximately the same number of examples, we define a “consistency” measure
for a pair of classifiers as the average support overlap over all distinct pairs of runs.
That is, for any given data set and method, and any two loops of cross-validation,
let S1 and S2 be the supports (set of selected genes) and define the overlap as
|S1∩S2||S1∪S2| . This fraction is then averaged over all 100(99)/2 pairs of loops, and obvi-
ously ranges from zero (no consistency) to one (consistency in all loops). Whereas
in 16 of the 21 data sets KTSP had a higher consistency score than SVM, the more
important point is that in both cases the scores are low in absolute terms, which
coheres with other observations about the enormous variations in learned genes
signatures.

5. Discussion and conclusions. What might be a “mechanistic interpreta-
tion” of the TSP classifier, where the context consists of only two genes? In Price
et al. (2007), a reversal between the two genes Prune2 and Obscurin is shown to
be an accurate test for separating GIST and LMS. Providing an explanation, a hy-
pothesized mechanism, is not straightforward, although it has been recently shown
that both modulate RhoA activity (which controls many signaling events): a splice
variant of Prune2 is reported to decrease RhoA activity when over-expressed and
Obscurin contains a Rho-GEF binding domain which helps to activate RhoA [Funk
(2012)].

Generically, one of the most elementary regulatory motifs is simply A inhibits
B (denoted A � B). For example, A may be constitutively “on” and B constitu-
tively “off” after development. Perhaps A is a transcription factor or involved in
methylation of B . In the normal phenotype we see A expressed, but perhaps A

becomes inactivated in the cancer phenotype, resulting in the expression of B , and
hence an expression reversal from normal to cancer. Still more generally, a variety
of regulatory feedback loops have been identified in mammals. For instance, an
example of a bi-stable loop is shown below.

Due to the activation and suppression patterns depicted in Figure 3, we might
expect P(XA1 < XA2 |Y = 0) � P(XA1 < XA2 |Y = 1) and P(XB1 < XB2 |Y =

FIG. 3. A bi-stable feedback loop. Molecules A1, A2 (resp., B1, B2) are from the same species, for
example, two miRNAs (resp., two mRNAs). Letters in boldface indicate an “on” state.
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0) � P(XB1 < XB2 |Y = 1). Thus, there are two expression reversals, one between
the two miRNAs and one, in the opposite direction, between the two mRNAs.
Given both miRNA and mRNA data, we might then build a classifier based on
these two switches. For example, the rank discriminant might simply be 2-TSP,
the number of reversals observed. Accordingly, we have argued that expression
comparisons may provide an elementary building block for a connection between
rank-based decision rules and potential mechanisms.

We have reported extensive experiments with classifiers based on expression
comparisons with different diseases and microarray platforms and compared the
results with other methods which usually use significantly more genes. No one
classifier, whether within the rank-based collection or between them and other
methods such as SVM and PAM, uniformly dominates. The most appropriate one
to use is likely to be problem-dependent. Moreover, until much larger data sets
become available, it will be difficult to obtain highly accurate estimates of gener-
alization errors. What does seem apparent is that our results support the conclu-
sions reached in earlier studies [Dudoit, Fridlyand and Speed (2002), Braga-Neto
(2007), Wang (2012), Simon et al. (2003)] that simple classifiers are usually com-
petitive with more complex ones with microarray data and limited samples. This
has important consequences for future developments in functional genomics since
one key thrust of “personalized medicine” is an attempt to learn appropriate treat-
ments for disease subtypes, which means sample sizes will not necessarily get
larger and might even get smaller. Moreover, as attention turns increasingly to-
ward treatment, potentially mechanistic characterizations of statistical decisions
will become of paramount importance for translational medicine.

SUPPLEMENTARY MATERIAL

Proposition S1 (DOI: 10.1214/14-AOAS738SUPPA; .pdf). We provide the
statement and proof of Proposition S1 as well as statistical tests for the assump-
tions made in Proposition S1.

Notch-plots for classification accuracies (DOI: 10.1214/14-AOAS738SUPPB;
.pdf). We provide notch-plots of the estimates of classification accuracy for every
method and every data set based on ten runs of tenfold cross-validation.

Algorithms for KTSP and TSM (DOI: 10.1214/14-AOAS738SUPPC; .pdf).
We provide a summary of the algorithms for learning the KTSP and TSM classi-
fiers.
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