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Introduction

I TF-gene interactions can be used to learn TF-TF interactions.

I Assumption: if TF ‘A’ regulates TF ‘B’, then it is more likely
that TF ‘A’ and TF ‘B’ will regulate similar sets of non-TF genes.

I Idea: Represent each TF as a vector of TF-gene interactions.

I When TF-gene edges are not known in advance, these vectors can
be estimated by regressing gene expression on TF expression.

Learning TF-TF Interactions from TF-
Gene Interactions

I Many algorithms for learning gene regulatory networks (such as
relevance networks [1], ARACNE [2] and CLR [3]) compute pair-
wise measurements of similarity between random variables (typi-
cally, mutual information).

I The usual approach consists in
working with a matrix of microarray
data where columns correspond to
TFs and rows correspond to different
samples.

L = {x(1), . . . , x(n)}, ∀i, x(i) ∈ Rd

I When TF-gene interactions are
known, we propose to use an alterna-

tive data matrix where Y
(j)
i = 1 if

TF i regulates gene j, and Y
(j)
i = 0

otherwise.

L∗ = {y(1), . . . , y(m)}, ∀i, y(i) ∈ {0, 1}d

I When TF-gene interactions are un-
known, they can be estimated from
microarray data. For each gene tar-
get t, solve

min
β(t)
||X · β(t) − x(t)||2

where x(t) ∈ Rn is the expression
data for gene t,X ∈ Mn×d is the ma-
trix of TF expression and β(t) ∈ Rd.

Transcriptional Networks in E. coli

I Ground truth network from
RegulonDB database [4],
which contains 106 TF-
TF interactions and 2,109
TF-gene interactions in-
volving d = 126 TFs and
m = 984 genes.

I Expression data from the
Many Microbe Microarrays
Database (M3D) [5], which
contains n = 466 micro-
array samples.

I We measured ROC performance for edgewise network reconstruc-
tion accuracy using the three types of data matrix representation.

I For the regression coefficients case, we simply ranked all pairwise
Euclidean distances between columns.
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Discussion

I New approach intended to improve (not replace) existing TF-TF
network reconstruction algorithms.

I By estimating TF-gene edges, we look jointly at microarray data
for TFs and non-TF target genes (as opposed to alternatives that
learn TF-TF networks using TF expression alone).

I Non-penalized linear regression was used only for illustration pur-
poses. Sparse regression techniques may lead to better results,
possibly closing the gap between the green and red ROC curves.

I Basis for two-phase network learning strategy: first, learn TF-gene
edges using regression and then learn TF-TF edges as graphical
models using the vectors of regression coefficients.
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