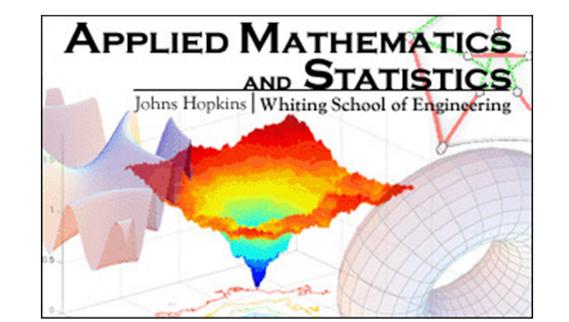


Predicting Gene Expression from TF Expression Reveals TF-TF Interactions in *E. coli*



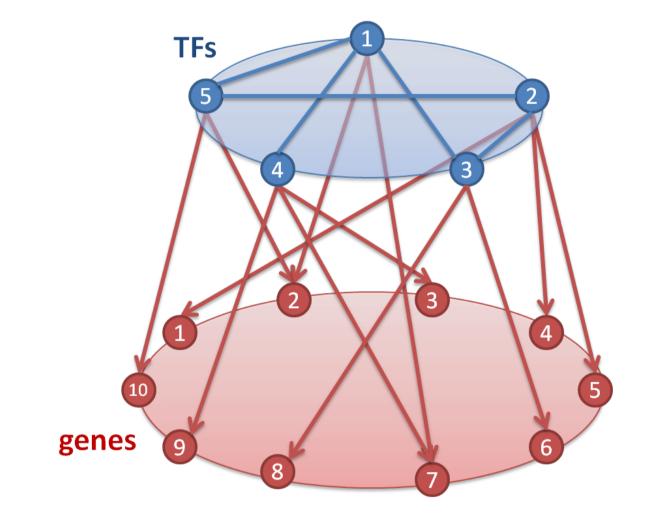
Francisco Sánchez-Vega, Laurent Younes and Donald Geman

Applied Mathematics and Statistics Department and Center for Imaging Sciences. Johns Hopkins University, Baltimore, MD.

Introduction

► TF-gene interactions can be used to learn TF-TF interactions.

- Assumption: if TF 'A' regulates TF 'B', then it is more likely that TF 'A' and TF 'B' will regulate similar sets of non-TF genes.
- **Idea:** Represent each TF as a vector of TF-gene interactions.



	TF_1	TF_2	TF_3	TF_4	TF_5
g_1	0	1	0	0	0
g ₂	1	0	0	0	1
g ₃	0	0	0	1	0
g ₄	0	1	0	0	0
g 5	0	1	0	0	0
g 6	0	0	1	0	0
g ₇	1	0	0	1	0
g ₈	0	0	1	0	0
g 9	0	0	0	1	0
g ₁₀	0	0	0	0	1

Transcriptional Networks in *E. coli*

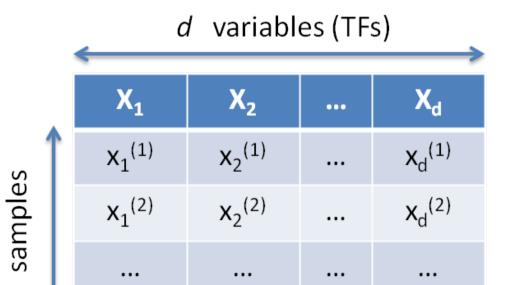
- Ground truth network from RegulonDB database |4|,which contains 106 TF-TF interactions and 2,109 TF-gene interactions involving d = 126 TFs and m = 984 genes.
- Expression data from the Many Microbe Microarrays Database (M3D) [5], which contains n = 466 micro-



When TF-gene edges are not known in advance, these vectors can be *estimated* by regressing gene expression on TF expression.

Learning TF-TF Interactions from TF-**Gene Interactions**

Many algorithms for learning gene regulatory networks (such as relevance networks [1], ARACNE [2] and CLR [3]) compute pairwise measurements of similarity between random variables (typically, mutual information).

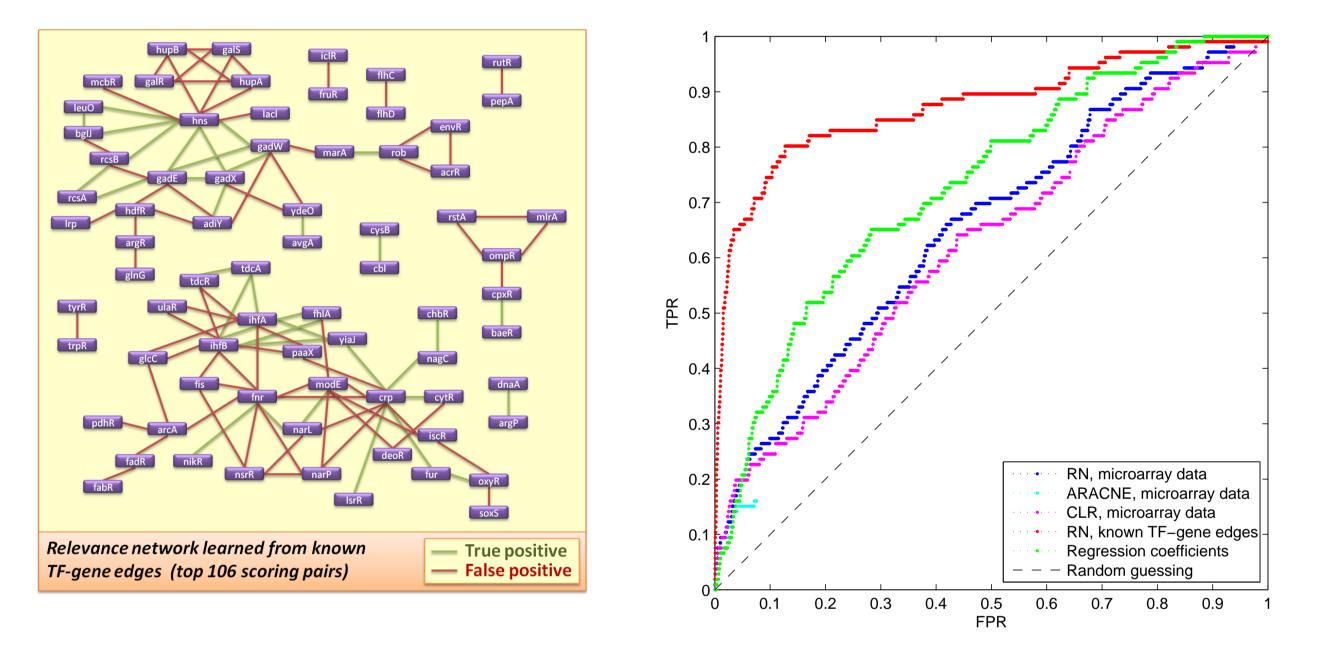


The usual approach consists in working with a matrix of microarray data where columns correspond to TFs and rows correspond to different samples.

array samples.

TF-TF ground truth network from RegulonDB

- We measured ROC performance for edgewise network reconstruction accuracy using the three types of data matrix representation.
- For the regression coefficients case, we simply ranked all pairwise Euclidean distances between columns.



Discussion

$$=$$
 $x_1^{(n)}$ $x_2^{(n)}$... $x_d^{(n)}$

$\mathcal{L} = \{ \mathrm{x}^{(1)}, \dots, \mathrm{x}^{(n)} \}, orall i, \mathrm{x}^{(i)} \in \mathbb{R}^{d}$

	<────	<i>d</i> variables (TFs)						
	Y ₁	Y ₂		Y _d				
	<i>Y</i> ₁ ⁽¹⁾	$y_{2}^{(1)}$		$Y_d^{(1)}$				
	<i>Y</i> ₁ ⁽²⁾	y ₂ ⁽²⁾		$y_d^{(2)}$				
	${y_1}^{(m)}$	${y_2}^{(m)}$		${\gamma_d}^{(m)}$				

► When TF-gene interactions are known, we propose to use an alternative data matrix where $Y_i^{(j)} = 1$ if TF *i* regulates gene *j*, and $Y_i^{(j)} = 0$ otherwise.

 $\mathcal{L}^* = \{ \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(m)} \}, \forall i, \mathbf{y}^{(i)} \in \{0, 1\}^d$

		<i>d</i> variables (TFs)						
		Ŷı	Ŷ2		Ŷ _d			
<i>m</i> target genes		$ \beta_1^{(1)} $	$ \beta_{2}^{(1)} $		$ \beta_{d}^{(1)} $			
		$ \beta_1^{(2)} $	$ \beta_{2}^{(2)} $		$ \beta_d^{(2)} $			
	,	$ \beta_1^{(m)} $	$ \beta_2^{(m)} $		$ \beta_d^{(m)} $			

When TF-gene interactions are unknown, they can be estimated from microarray data. For each gene target \boldsymbol{t} , solve

$$\min_{eta^{(t)}} || \mathcal{X} \cdot eta^{(t)} - \mathrm{x}^{(t)} ||_2$$

where $\mathbf{x}^{(t)} \in \mathbb{R}^n$ is the expression data for gene $t, \mathcal{X} \in \mathbb{M}_{n \times d}$ is the matrix of TF expression and $\beta^{(t)} \in \mathbb{R}^d$.

Please send correspondence to Francisco Sánchez-Vega (sanchez@cis.jhu.edu) at the Center for Imaging Sciences, 307C Clark Hall. The Johns Hopkins University. 3400 N. Charles Street, Baltimore, MD, 21218-2686, USA. http://www.cis.jhu.edu

- New approach intended to improve (not replace) existing TF-TF network reconstruction algorithms.
- By estimating TF-gene edges, we look jointly at microarray data for TFs and non-TF target genes (as opposed to alternatives that learn TF-TF networks using TF expression alone).
- Non-penalized linear regression was used only for illustration purposes. Sparse regression techniques may lead to better results, possibly closing the gap between the green and red ROC curves.
- Basis for two-phase network learning strategy: first, learn TF-gene edges using regression and then learn TF-TF edges as graphical models using the vectors of regression coefficients.

References

- [1] Butte, A. J. and Kohane, I. S.: "Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements," Pac. Symp. Biocomputing, 2000.
- [2] Margolin, A. et al.: "ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context," BMC Bioinformatics, vol. 7, 2006.
- [3] Faith, J. J. et al.: "Large-Scale mapping and validation of *Escherichia coli* transcriptional regulation from a compendium of expression profiles," *PLoS Biol.*, vol. 5, n. 1, 2007.
- [4] Gama-Castro S. et al.: "RegulonDB (version 7.0): Transcriptional regulation of *Escherichia coli* K-12 integrated within genetic sensory response units (gensor units)," *Nucleic Acids Research*, 2010.
- [5] Faith, J. J. et al.: "Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata," Nucleic Acids Research, 2008.

Acknowledgments: Francisco Sánchez-Vega was supported by a travel grant from the Acheson J. Duncan Fund for the Advancement of Research in Statistics at Johns Hopkins. The work of Donald Geman is partially supported by NIH-NCRR Grant UL1 RR 025005.