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Unigram Models

Closed vocabulary V , #V = K ≈ 105

Training set of words x1, . . . , xn. n(x) is the number of times word x has
been seen in the training set.
Want to build a probability mass function π over the words of V
Such a distribution is called Unigram model.
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Unigram Models
Empirical distribution.

π0(x) =
n(x)

n
=

1

n

n∑
i=1

δ(x = xi )

Add-β

πadd−β(x) =
n(x) + β

n + βK
= (1− λ)

n(x)

n
+ λ

1

K

λ = (βK )−1(n + βK )
Good-Turing

pGT (x) =
n(x) + 1

n

rn(x)+1

rn(x)
if n(x) < M

= α
n(x)

n
otherwise

rj is the number of words observed j times, M = 5− 10, α is a normalizing
constant.
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Example of diffusion
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Example of diffusion
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How to use diffusion to build unigram models ?

Idea: Build a graph.
Vertices = V ,
Define the edges ... start at π0(x) = n−1nx) and diffuse and stop ...
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Heat equation in IR2

x = (x1, x2) ∈ IR2, y = (y1, y2) ∈ IR2, t ≥ 0, α > 0
Kt(x , y) is the temperature at time t at x when starting at time t = 0
with all the heat concentrated at y. It is called a diffusion kernel.

for all x , for all t ≥ 0,
∂

∂t
Kt(x , y) = α4Kt(x , y)

4 stands for Laplacian.

4Kt(x , y) =
∂2

∂2x1
Kt((x1, x2), y) +

∂2

∂2x2
Kt((x1, x2), y)
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Heat equation in IR2

Without restricting the domain, the solution is given by

Kt(x , y) =
1

4παt
exp

(
− 1

4αt

(
(x1 − y1)

2 + (x2 − y2)
2
))

Kt(x , y) is the density of a

N(y , 2αt Id)

If now the temperature at time 0 is given by g(x) then the solution of the
heat equation is the convolution∫ ∫

Kt(x , y)g(y)dy
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Discretization of the Laplacian

x = (x1, x2) ∈ IR2, f : IR2 7→ IR

∂

∂x1
f (x1, x2) ≈ 1

h

(
f (x1 +

h

2
, x2)− f (x1 −

h

2
, x2)

)
∂2

∂2x1
f (x1, x2) ≈ 1

h

(
∂

∂x1
f (x1 +

h

2
, x2)−

∂

∂x1
f (x1 −

h

2
, x2)

)
≈ 1

h

(
1

h
(f (x1 + h, x2)− f (x1, x2))−

1

h
(f (x1, x2)− f (x1 − h, x2))

)
≈ 1

h2
(f (x1 + h, x2) + f (x1 − h, x2)− 2f ((x1, x2))

∂2

∂2x2
f (x1, x2) ≈ 1

h2
(f (x1, x2 + h) + f (x1, x2 − h)− 2f ((x1, x2))
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Discretization of the Laplacian

4f (x1, x2) =
∂2

∂2x1
f (x1, x2) +

∂2

∂2x2
f (x1, x2)

=
1

h2
(f (x1 + h, x2) + f (x1 − h, x2)− 2f ((x1, x2)) +

1

h2
(f (x1, x2 + h) + f (x1, x2 − h)− 2f ((x1, x2))

Define V(x) = {(x1 + h, x2), (x1 − h, x2), (x1, x2 − h), (x1, x2 + h)} and
d(x) = #V(x) then

4f (x) =
1

h2

 ∑
y∈V(x)

f (y)

− d(x)f (x)
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Heat equation over a graph

G (V ,E ) a non oriented graph.
V = {x1, . . . , xn} is the finite set of vertices.
E ⊂ V × V is the set of edges. If (x , y) ∈ E , we denote x ∼ y . Assume
no edge from a vertex to itself.
The degree of x ∈ V is d(x) =

∑
y∈V δ(x ∼ y)

f : V 7→ IR can be seen as a function or as a vector (f (x1), . . . , f (xn))
T

H : V × V 7→ IR can be seen as a function or as a n × n matrix.
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Define the Laplacian (choose h = 1)

4f (x) =

 ∑
y∈V(x)

f (y)

− d(x)f (x)

=

( ∑
y :y∼x

f (y)

)
− d(x)f (x)

=
∑
y∈V

(f (y)δ(x ∼ y)− d(y)f (y)δ(x = y))

=
∑
y∈V

(δ(x ∼ y)− d(y)δ(x = y)) f (y)

=
∑
y∈V

H(x , y)f (y)

= Hf (x)
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Laplacian

H(x , y) = δ(x ∼ y)− d(y)δ(x = y)

H = A− D

A(x , y) = δ(x ∼ y) is the adjacency matrix of G
D(x , y) = d(x)δ(x = y) is the degree matrix. D is diagonal.
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Heat Equation

x , y ∈ V , t ≥ 0.
Kt(x , y) is the temperature at x at time t when starting with a unit
temperature at y at time 0.
K0(x , y) = δ(x = y) which in matrix notation is K0 = Id
We define the heat equation for a fixed y ∈ V as:

for each x ∈ V , for each t ≥ 0,
∂

∂t
Kt(x , y) = HKt(x , y)

Notate ut(x) = Kt(x , y)

∂

∂t
ut(x) =

∑
z∈V

H(x , z)ut(z)

=

(∑
z:z∼x

ut(z)

)
− d(x)ut(x)

= d(x)

((
1

d(x)

∑
z:z∼x

ut(z)

)
− ut(x)

)
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Heat Equation

Claims:
The heat equation admits a unique solution Kt = etH

etH = Id + tH +
t2

2!
H2 +

t3

3!
H3 + . . .

etH = lim
k→+∞

(Id +
t

k
H)k

Starting with a temperature π(x), x ∈ V , the solution to the heat
equation is Ktπ
If for all x, π(x) ≥ 0 and

∑
x∈V π(x) = 1 then for all x ∈ V and all t ≥ 0,

Ktπ(x) ≥ 0 and
∑

x∈V Ktπ(x) = 1
If G is connected Ktπ > 0.
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Markov Chain Interpretation

Recall Kt = limk→+∞(Id + t
k H)k

Fix t > 0, choose a large enough k,
Define a Markov Chain over V with X0 ∼ π0

P(Xn+1 = y |Xn = x) = (Id +
t

k
H)(x , y)

= δ(x = y) +
t

k
(δ(x ∼ y)− d(x)δ(x = y))

= δ(x = y)(1− t

k
d(x)) +

t

k
δ(x ∼ y)

Then P(Xk = y) ≈ (Ktπ0)(y)
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Generalized Laplacian

Define a weight function f : E 7→ IR stricty positive, (symmetric)
The generalized Laplacian is then

H(x , y) = f (x , y)δ(x ∼ y)− d(x)δ(x = y)

with d(x) =
∑

y :y∼x f (x , y) then, as previously,

The heat equation admits a unique solution Kt = etH

Starting with a temperature π(x), x ∈ V , the solution to the heat
equation is Ktπ
If for all x, π(x) ≥ 0 and

∑
x∈V π(x) = 1 then for all x ∈ V and all t ≥ 0,

Ktπ(x) ≥ 0 and
∑

x∈V Ktπ(x) = 1
If G is connected then Ktπ > 0.
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Examples

I Complete graph with K vertices. x ∼ y ⇐⇒ x 6= y

Kt(x , y) =
1

K
(1− e−Kt) + e−Ktδ(x = y)

I Vertices are binary strings of length K.
x ∼ y ⇐⇒ Hamming(x , y) = 1

Kt(x , y) =
1

2K
(1 + e−2t)K (tanh(t))H(x ,y)

I Diffusion kernels are known for closed chain and certain regular trees

I Small graphs. Diagonalize H
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Unigram Models from Diffusion

Choose Set of vertices = V . Choose the edges ...

πt(x) =
∑
y

Kt(x , y)π0(y)

=
∑
y

Kt(x , y)
1

n

n∑
i=1

δ(y = xi )

=
1

n

n∑
i=1

Kt(x , xi )
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Unigram Models from Diffusion. Complete Graph

Choose the complete graph over V . x ∼ y ⇐⇒ x 6= y . Start at π0 Then

πt(x) =
1

n

n∑
i=1

Kt(x , xi )

=
1

n

n∑
i=1

(
1

K
(1− e−Kt) + e−Ktδ(x = xi )

)
=

1

K
(1− e−Kt) + e−Kt n(x)

n

=
n(x) + β

n + βK

Add-β estimator with

β =
n

K
(eKt − 1)
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Unigram Models from diffusion. Data dependent graph

Define the edges as follows: x ∼ y ⇐⇒ |n(x)− n(y)| ≤ 1
Computation of the kernel is difficult ...
Recall

Kt = lim
k→+∞

(Id +
t

k
H)k

Compute (Id + t
3H)3π0 with t = 1

K yields fast and interesting results, see
later.
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Normalized Diffusion

G = (V ,w) a weighted graph. w : V × V → IR
w(x , y) = w(y , x), w(x , y) ≥ 0 and w(x , x) > 0
w(x , y) is interpreted as the similarity between x and y .
Define d(x) =

∑
y∈V w(x , y)

Define a Markov chain X0,X1, . . . over V with initial distribution π0

Define a transition matrix P(X1 = y |X0 = x) = T (x , y) = d−1(x)w(x , y)
Remark that T is not symmetric.
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Normalized Diffusion

Recall P(X1 = y |X0 = x) = T (x , y) = d−1(x)w(x , y)
π1(y) = P(X1 = y) =

∑
x∈V T (x , y)π0(x),

πk(y) = P(Xk = y) =
∑

x∈V T k(x , y)π0(x),
If G is connected, (there is a path with > 0 weights between any two
vertices)

lim
k→+∞

πk(y) = π(y) =
d(y)∑

x∈V d(x)
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Examples

Observe x1, . . . , xn, xi ∈ V

π0(x) =
1

n

n∑
i=1

δ(x = xi )

π1(y) =
∑
x∈V

T (x , y)
1

n

n∑
i=1

δ(x = xi )

= =
1

n

n∑
i=1

T (xi , y)

=
1

n

n∑
i=1

w(xi , y)

d(xi )
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Example 1

|V | = K , Choose w(x , y) = αδ(x = y) + 1, α 6= 0
Then d(x) = α + K

π1(y) =
1

n

n∑
i=1

w(xi , y)

d(xi )

=
1

n

1

α + K

n∑
i=1

(αδ(xi , y) + 1)

=
1

n

1

α + K
(αn(y) + n)

=
α

α + K

n(y)

n
+

K

α + K

1

K

=
n(y) + n

α

n + n
αK

Add-β estimator with β = α−1n
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Example 2

|V | = K , Choose w(x , y) = δ(|n(x)− n(y)| ≤ 1)
d(x) = rn(x)−1 + rnx + rn(x)+1

rj is the number of words observed j times.

π1(y) =
1

n

n∑
i=1

δ(|n(xi )− n(y)| ≤ 1)

rn(xi )−1 + rn(xi ) + rn(xi )+1

=
1

n

n(y)+1∑
j=n(y)−1

jrj
rj−1 + rj + rj+1

If n(y) = 0, πi (y) = 1
n

r1
r0+r1+r2

,
∑

y :n(y)=0 π1(y) = 1
n

r1
1+

r1
r0

+
r2
r0

similar to

Good-Turing when r0 is large.
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Experiments (joint work with Damianos Karakos)

In our experiments, we used Sections 00-22 (consisting of ∼ 106 words) of
the UPenn Treebank corpus for training, and Sections 23-24 (consisting of
∼ 105 words) for testing. We split the training set into 10 subsets, leading
to 10 datasets of size ∼ 105 tokens each. Averaged results are presented in
the tables below for various choices of the training set size. We show the
mean code-length, as well as the standard deviation (when available). In
all cases, we chose K = 105 as the fixed size of our vocabulary.
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Experiments

mean code length std

πβ, β = 1 11.10 0.03

πGT 10.68 0.06

πND 10.69 0.06

πKD 10.74 0.08

Table: Results with training set of size ∼ 105.

mean code length

πβ, β = 1 10.34

πGT 10.30

πND 10.30

πKD 10.31

Table: Results with training set of size ∼ 106.
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