Diffusion Kernels on Graphs and Applications to Unigram Models

Bruno Jedynak

Johns Hopkins University

February 16, 2007

Outline

- Unigram Models
- How to use diffusion principle to build a Unigram Model
- Heat equation when the space variable belongs \boldsymbol{R}^{2}
- Heat equation over a graph
- Application: Unigram models
- Another construction: Normalized Diffusion
- More Unigram models
- Experiments (joint work with Damianos Karakos)

Unigram Models

Closed vocabulary $V, \# V=K \approx 10^{5}$
Training set of words $x_{1}, \ldots, x_{n} . n(x)$ is the number of times word x has been seen in the training set.
Want to build a probability mass function π over the words of V Such a distribution is called Unigram model.

Unigram Models

Empirical distribution.

$$
\pi_{0}(x)=\frac{n(x)}{n}=\frac{1}{n} \sum_{i=1}^{n} \delta\left(x=x_{i}\right)
$$

Add- β

$$
\pi_{a d d-\beta}(x)=\frac{n(x)+\beta}{n+\beta K}=(1-\lambda) \frac{n(x)}{n}+\lambda \frac{1}{K}
$$

$\lambda=(\beta K)^{-1}(n+\beta K)$
Good-Turing

$$
\begin{aligned}
p_{G T}(x) & =\frac{n(x)+1}{n} \frac{r_{n(x)+1}}{r_{n(x)}} \text { if } n(x)<M \\
& =\alpha \frac{n(x)}{n} \text { otherwise }
\end{aligned}
$$

r_{j} is the number of words observed j times, $M=5-10, \alpha$ is a normalizing constant.

Example of diffusion

Example of diffusion

How to use diffusion to build unigram models ?

Idea: Build a graph.
Vertices $=V$,
Define the edges ... start at $\left.\pi_{0}(x)=n^{-1} n x\right)$ and diffuse and stop ...

Heat equation in R^{2}
$x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}, y=\left(y_{1}, y_{2}\right) \in \boldsymbol{R}^{2}, t \geq 0, \alpha>0$
$K_{t}(x, y)$ is the temperature at time t at \times when starting at time $t=0$ with all the heat concentrated at y . It is called a diffusion kernel.

$$
\text { for all } x, \text { for all } t \geq 0, \frac{\partial}{\partial t} K_{t}(x, y)=\alpha \triangle K_{t}(x, y)
$$

\triangle stands for Laplacian.

$$
\triangle K_{t}(x, y)=\frac{\partial^{2}}{\partial^{2} x_{1}} K_{t}\left(\left(x_{1}, x_{2}\right), y\right)+\frac{\partial^{2}}{\partial^{2} x_{2}} K_{t}\left(\left(x_{1}, x_{2}\right), y\right)
$$

Heat equation in R^{2}

Without restricting the domain, the solution is given by

$$
K_{t}(x, y)=\frac{1}{4 \pi \alpha t} \exp \left(-\frac{1}{4 \alpha t}\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right)\right)
$$

$K_{t}(x, y)$ is the density of a

$$
N(y, 2 \alpha t I d)
$$

If now the temperature at time 0 is given by $g(x)$ then the solution of the heat equation is the convolution

$$
\iint K_{t}(x, y) g(y) d y
$$

Discretization of the Laplacian

$$
x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}, f: \boldsymbol{R}^{2} \mapsto \boldsymbol{R}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right) \approx \frac{1}{h}\left(f\left(x_{1}+\frac{h}{2}, x_{2}\right)-f\left(x_{1}-\frac{h}{2}, x_{2}\right)\right) \\
& \frac{\partial^{2}}{\partial^{2} x_{1}} f\left(x_{1}, x_{2}\right) \approx \frac{1}{h}\left(\frac{\partial}{\partial x_{1}} f\left(x_{1}+\frac{h}{2}, x_{2}\right)-\frac{\partial}{\partial x_{1}} f\left(x_{1}-\frac{h}{2}, x_{2}\right)\right) \\
& \approx \frac{1}{h}\left(\frac{1}{h}\left(f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)\right)-\right. \\
&\left.\frac{1}{h}\left(f\left(x_{1}, x_{2}\right)-f\left(x_{1}-h, x_{2}\right)\right)\right) \\
& \approx \frac{1}{h^{2}}\left(f\left(x_{1}+h, x_{2}\right)+f\left(x_{1}-h, x_{2}\right)-2 f\left(\left(x_{1}, x_{2}\right)\right)\right. \\
& \approx \frac{1}{h^{2}}\left(f\left(x_{1}, x_{2}+h\right)+f\left(x_{1}, x_{2}-h\right)-2 f\left(\left(x_{1}, x_{2}\right)\right)\right.
\end{aligned}
$$

Discretization of the Laplacian

$$
\begin{aligned}
\Delta f\left(x_{1}, x_{2}\right)= & \frac{\partial^{2}}{\partial^{2} x_{1}} f\left(x_{1}, x_{2}\right)+\frac{\partial^{2}}{\partial^{2} x_{2}} f\left(x_{1}, x_{2}\right) \\
= & \frac{1}{h^{2}}\left(f\left(x_{1}+h, x_{2}\right)+f\left(x_{1}-h, x_{2}\right)-2 f\left(\left(x_{1}, x_{2}\right)\right)+\right. \\
& \frac{1}{h^{2}}\left(f\left(x_{1}, x_{2}+h\right)+f\left(x_{1}, x_{2}-h\right)-2 f\left(\left(x_{1}, x_{2}\right)\right)\right.
\end{aligned}
$$

Define $\mathcal{V}(x)=\left\{\left(x_{1}+h, x_{2}\right),\left(x_{1}-h, x_{2}\right),\left(x_{1}, x_{2}-h\right),\left(x_{1}, x_{2}+h\right)\right\}$ and $d(x)=\# \mathcal{V}(x)$ then

$$
\Delta f(x)=\frac{1}{h^{2}}\left(\left(\sum_{y \in \mathcal{V}(x)} f(y)\right)-d(x) f(x)\right)
$$

Heat equation over a graph

$G(V, E)$ a non oriented graph.
$V=\left\{x_{1}, \ldots, x_{n}\right\}$ is the finite set of vertices.
$E \subset V \times V$ is the set of edges. If $(x, y) \in E$, we denote $x \sim y$. Assume no edge from a vertex to itself.
The degree of $x \in V$ is $d(x)=\sum_{y \in V} \delta(x \sim y)$
$f: V \mapsto \boldsymbol{R}$ can be seen as a function or as a vector $\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)^{T}$ $H: V \times V \mapsto \boldsymbol{R}$ can be seen as a function or as a $n \times n$ matrix.

Define the Laplacian (choose $h=1$)

$$
\begin{aligned}
\triangle f(x) & =\left(\sum_{y \in \mathcal{V}(x)} f(y)\right)-d(x) f(x) \\
& =\left(\sum_{y: y \sim x} f(y)\right)-d(x) f(x) \\
& =\sum_{y \in V}(f(y) \delta(x \sim y)-d(y) f(y) \delta(x=y)) \\
& =\sum_{y \in V}(\delta(x \sim y)-d(y) \delta(x=y)) f(y) \\
& =\sum_{y \in V} H(x, y) f(y) \\
& =\operatorname{Hf}(x)
\end{aligned}
$$

Laplacian

$$
H(x, y)=\delta(x \sim y)-d(y) \delta(x=y)
$$

$$
H=A-D
$$

$A(x, y)=\delta(x \sim y)$ is the adjacency matrix of G $D(x, y)=d(x) \delta(x=y)$ is the degree matrix. D is diagonal.

Heat Equation

$x, y \in V, t \geq 0$.
$K_{t}(x, y)$ is the temperature at x at time t when starting with a unit temperature at y at time 0 .
$K_{0}(x, y)=\delta(x=y)$ which in matrix notation is $K_{0}=l d$
We define the heat equation for a fixed $y \in V$ as:
for each $x \in V$, for each $t \geq 0, \frac{\partial}{\partial t} K_{t}(x, y)=H K_{t}(x, y)$
Notate $u_{t}(x)=K_{t}(x, y)$

$$
\begin{aligned}
\frac{\partial}{\partial t} u_{t}(x) & =\sum_{z \in V} H(x, z) u_{t}(z) \\
& =\left(\sum_{z: z \sim x} u_{t}(z)\right)-d(x) u_{t}(x) \\
& =d(x)\left(\left(\frac{1}{d(x)} \sum_{z: z \sim x} u_{t}(z)\right)-u_{t}(x)\right)
\end{aligned}
$$

Heat Equation

Claims:
The heat equation admits a unique solution $K_{t}=e^{t H}$

$$
\begin{gathered}
e^{t H}=I d+t H+\frac{t^{2}}{2!} H^{2}+\frac{t^{3}}{3!} H^{3}+\ldots \\
e^{t H}=\lim _{k \rightarrow+\infty}\left(I d+\frac{t}{k} H\right)^{k}
\end{gathered}
$$

Starting with a temperature $\pi(x), x \in V$, the solution to the heat equation is $K_{t} \pi$
If for all $\mathrm{x}, \pi(x) \geq 0$ and $\sum_{x \in V} \pi(x)=1$ then for all $x \in V$ and all $t \geq 0$, $K_{t} \pi(x) \geq 0$ and $\sum_{x \in V} K_{t} \pi(x)=1$
If G is connected $K_{t} \pi>0$.

Markov Chain Interpretation

Recall $K_{t}=\lim _{k \rightarrow+\infty}\left(I d+\frac{t}{k} H\right)^{k}$
Fix $t>0$, choose a large enough k,
Define a Markov Chain over V with $X_{0} \sim \pi_{0}$

$$
\begin{aligned}
P\left(X_{n+1}=y \mid X_{n}=x\right) & =\left(I d+\frac{t}{k} H\right)(x, y) \\
& =\delta(x=y)+\frac{t}{k}(\delta(x \sim y)-d(x) \delta(x=y)) \\
& =\delta(x=y)\left(1-\frac{t}{k} d(x)\right)+\frac{t}{k} \delta(x \sim y)
\end{aligned}
$$

Then $P\left(X_{k}=y\right) \approx\left(K_{t} \pi_{0}\right)(y)$

Generalized Laplacian

Define a weight function $f: E \mapsto \boldsymbol{R}$ stricty positive, (symmetric) The generalized Laplacian is then

$$
H(x, y)=f(x, y) \delta(x \sim y)-d(x) \delta(x=y)
$$

with $d(x)=\sum_{y: y \sim x} f(x, y)$ then, as previously,
The heat equation admits a unique solution $K_{t}=e^{t H}$
Starting with a temperature $\pi(x), x \in V$, the solution to the heat equation is $K_{t} \pi$
If for all $\mathrm{x}, \pi(x) \geq 0$ and $\sum_{x \in V} \pi(x)=1$ then for all $x \in V$ and all $t \geq 0$, $K_{t} \pi(x) \geq 0$ and $\sum_{x \in V} K_{t} \pi(x)=1$
If G is connected then $K_{t} \pi>0$.

Examples

- Complete graph with K vertices. $x \sim y \Longleftrightarrow x \neq y$

$$
K_{t}(x, y)=\frac{1}{K}\left(1-e^{-K t}\right)+e^{-K t} \delta(x=y)
$$

- Vertices are binary strings of length K . $x \sim y \Longleftrightarrow \operatorname{Hamming}(x, y)=1$

$$
K_{t}(x, y)=\frac{1}{2^{K}}\left(1+e^{-2 t}\right)^{K}(\tanh (t))^{H(x, y)}
$$

- Diffusion kernels are known for closed chain and certain regular trees
- Small graphs. Diagonalize H

Unigram Models from Diffusion

Choose Set of vertices $=V$. Choose the edges \ldots

$$
\begin{aligned}
\pi_{t}(x) & =\sum_{y} K_{t}(x, y) \pi_{0}(y) \\
& =\sum_{y} K_{t}(x, y) \frac{1}{n} \sum_{i=1}^{n} \delta\left(y=x_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} K_{t}\left(x, x_{i}\right)
\end{aligned}
$$

Unigram Models from Diffusion. Complete Graph

Choose the complete graph over $V . x \sim y \Longleftrightarrow x \neq y$. Start at π_{0} Then

$$
\begin{aligned}
\pi_{t}(x) & =\frac{1}{n} \sum_{i=1}^{n} K_{t}\left(x, x_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{K}\left(1-e^{-K t}\right)+e^{-K t} \delta\left(x=x_{i}\right)\right) \\
& =\frac{1}{K}\left(1-e^{-K t}\right)+e^{-K t} \frac{n(x)}{n} \\
& =\frac{n(x)+\beta}{n+\beta K}
\end{aligned}
$$

Add- β estimator with

$$
\beta=\frac{n}{K}\left(e^{K t}-1\right)
$$

Unigram Models from diffusion. Data dependent graph

Define the edges as follows: $x \sim y \Longleftrightarrow|n(x)-n(y)| \leq 1$
Computation of the kernel is difficult ... Recall

$$
K_{t}=\lim _{k \rightarrow+\infty}\left(l d+\frac{t}{k} H\right)^{k}
$$

Compute $\left(I d+\frac{t}{3} H\right)^{3} \pi_{0}$ with $t=\frac{1}{K}$ yields fast and interesting results, see later.

Normalized Diffusion

$G=(V, w)$ a weighted graph. $w: V \times V \rightarrow \boldsymbol{R}$ $w(x, y)=w(y, x), w(x, y) \geq 0$ and $w(x, x)>0$
$w(x, y)$ is interpreted as the similarity between x and y.
Define $d(x)=\sum_{y \in V} w(x, y)$
Define a Markov chain X_{0}, X_{1}, \ldots over V with initial distribution π_{0} Define a transition matrix $P\left(X_{1}=y \mid X_{0}=x\right)=T(x, y)=d^{-1}(x) w(x, y)$ Remark that T is not symmetric.

Normalized Diffusion

Recall $P\left(X_{1}=y \mid X_{0}=x\right)=T(x, y)=d^{-1}(x) w(x, y)$
$\pi_{1}(y)=P\left(X_{1}=y\right)=\sum_{x \in V} T(x, y) \pi_{0}(x)$,
$\pi_{k}(y)=P\left(X_{k}=y\right)=\sum_{x \in V} T^{k}(x, y) \pi_{0}(x)$,
If G is connected, (there is a path with >0 weights between any two vertices)

$$
\lim _{k \rightarrow+\infty} \pi_{k}(y)=\pi(y)=\frac{d(y)}{\sum_{x \in V} d(x)}
$$

Examples

Observe $x_{1}, \ldots, x_{n}, x_{i} \in V$

$$
\begin{aligned}
& \pi_{0}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta\left(x=x_{i}\right) \\
\pi_{1}(y) & =\sum_{x \in V} T(x, y) \frac{1}{n} \sum_{i=1}^{n} \delta\left(x=x_{i}\right) \\
& ==\frac{1}{n} \sum_{i=1}^{n} T\left(x_{i}, y\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{w\left(x_{i}, y\right)}{d\left(x_{i}\right)}
\end{aligned}
$$

Example 1

$|V|=K$, Choose $w(x, y)=\alpha \delta(x=y)+1, \alpha \neq 0$
Then $d(x)=\alpha+K$

$$
\begin{aligned}
\pi_{1}(y) & =\frac{1}{n} \sum_{i=1}^{n} \frac{w\left(x_{i}, y\right)}{d\left(x_{i}\right)} \\
& =\frac{1}{n} \frac{1}{\alpha+K} \sum_{i=1}^{n}\left(\alpha \delta\left(x_{i}, y\right)+1\right) \\
& =\frac{1}{n} \frac{1}{\alpha+K}(\alpha n(y)+n) \\
& =\frac{\alpha}{\alpha+K} \frac{n(y)}{n}+\frac{K}{\alpha+K} \frac{1}{K} \\
& =\frac{n(y)+\frac{n}{\alpha}}{n+\frac{n}{\alpha} K}
\end{aligned}
$$

Add- β estimator with $\beta=\alpha^{-1} n$

Example 2

$|V|=K$, Choose $w(x, y)=\delta(|n(x)-n(y)| \leq 1)$
$d(x)=r_{n(x)-1}+r_{n_{x}}+r_{n(x)+1}$
r_{j} is the number of words observed j times.

$$
\begin{aligned}
\pi_{1}(y) & =\frac{1}{n} \sum_{i=1}^{n} \frac{\delta\left(\left|n\left(x_{i}\right)-n(y)\right| \leq 1\right)}{r_{n\left(x_{i}\right)-1}+r_{n\left(x_{i}\right)}+r_{n\left(x_{i}\right)+1}} \\
& =\frac{1}{n} \sum_{j=n(y)-1}^{n(y)+1} \frac{j r_{j}}{r_{j-1}+r_{j}+r_{j+1}}
\end{aligned}
$$

If $n(y)=0, \pi_{i}(y)=\frac{1}{n} \frac{r_{1}}{r_{0}+r_{1}+r_{2}}, \sum_{y: n(y)=0} \pi_{1}(y)=\frac{1}{n} \frac{r_{1}}{1+\frac{r_{1}}{r_{0}}+\frac{r_{2}}{r_{0}}}$ similar to
Good-Turing when r_{0} is large.

Experiments (joint work with Damianos Karakos)

In our experiments, we used Sections 00-22 (consisting of $\sim 10^{6}$ words) of the UPenn Treebank corpus for training, and Sections 23-24 (consisting of $\sim 10^{5}$ words) for testing. We split the training set into 10 subsets, leading to 10 datasets of size $\sim 10^{5}$ tokens each. Averaged results are presented in the tables below for various choices of the training set size. We show the mean code-length, as well as the standard deviation (when available). In all cases, we chose $K=10^{5}$ as the fixed size of our vocabulary.

Experiments

	mean code length	std
$\pi_{\beta}, \beta=1$	11.10	0.03
$\pi_{G T}$	10.68	0.06
$\pi_{N D}$	10.69	0.06
$\pi_{K D}$	10.74	0.08

Table: Results with training set of size $\sim 10^{5}$.

	mean code length
$\pi_{\beta}, \beta=1$	10.34
$\pi_{G T}$	10.30
$\pi_{N D}$	10.30
$\pi_{K D}$	10.31

Bruno Jedynak (JHU) Table: Results with training set of size $\sim 10^{6}{ }_{\text {Debruary }} 16,2007$

References:

- diffusion Kernels on Graphs and Other discrete Spaces Risi Imre Kondor and John Lafferty
- A General Framework for Adaptive Regularization Based on Diffusion Processes on Graphs Arthur D. Szalam, Mauro Maggioni and Ronald R. Coifman

Thank You

