Diffusion Kernels on Graphs and Applications to Unigram Models

Bruno Jedynak

Johns Hopkins University

February 16, 2007

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 1 / 30

- 3

イロト イポト イヨト イヨト

Outline

- Unigram Models
- ▶ How to use diffusion principle to build a Unigram Model
- Heat equation when the space variable belongs R^2
- Heat equation over a graph
- Application: Unigram models
- Another construction: Normalized Diffusion
- More Unigram models
- Experiments (joint work with Damianos Karakos)

Unigram Models

Closed vocabulary V, $\#V = K \approx 10^5$

Training set of words x_1, \ldots, x_n . n(x) is the number of times word x has been seen in the training set.

Want to build a probability mass function π over the words of V Such a distribution is called Unigram model.

Unigram Models

Empirical distribution.

$$\pi_0(x) = \frac{n(x)}{n} = \frac{1}{n} \sum_{i=1}^n \delta(x = x_i)$$

 $\mathsf{Add}\text{-}\beta$

$$\pi_{add-\beta}(x) = \frac{n(x)+\beta}{n+\beta K} = (1-\lambda)\frac{n(x)}{n} + \lambda \frac{1}{K}$$

 $\begin{aligned} \lambda &= (\beta K)^{-1} (n + \beta K) \\ \text{Good-Turing} \end{aligned}$

$$p_{GT}(x) = \frac{n(x) + 1}{n} \frac{r_{n(x)+1}}{r_{n(x)}} \text{ if } n(x) < M$$
$$= \alpha \frac{n(x)}{n} \text{ otherwise}$$

 r_j is the number of words observed j times, M = 5 - 10, α is a normalizing constant.

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 4 / 30

Example of diffusion

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

≣ ► ≣ ৩ ৭ ে February 16, 2007 5 / 30

Example of diffusion

≣ ► ≣ ৩৭.ে February 16, 2007 6 / 30

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

How to use diffusion to build unigram models ?

Idea: Build a graph. Vertices = V, Define the edges ... start at $\pi_0(x) = n^{-1}nx$) and diffuse and stop ...

Heat equation in \mathbb{R}^2

 $x = (x_1, x_2) \in \mathbb{R}^2, y = (y_1, y_2) \in \mathbb{R}^2, t \ge 0, \alpha > 0$ $K_t(x, y)$ is the temperature at time t at x when starting at time t = 0 with all the heat concentrated at y. It is called a <u>diffusion kernel</u>.

for all x, for all
$$t \ge 0$$
, $\frac{\partial}{\partial t} K_t(x, y) = \alpha \bigtriangleup K_t(x, y)$

 \triangle stands for Laplacian.

$$\bigtriangleup K_t(x,y) = \frac{\partial^2}{\partial^2 x_1} K_t((x_1,x_2),y) + \frac{\partial^2}{\partial^2 x_2} K_t((x_1,x_2),y)$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

イロト イポト イヨト イヨト 二日

Heat equation in \mathbb{R}^2

Without restricting the domain, the solution is given by

$$K_t(x,y) = \frac{1}{4\pi\alpha t} \exp\left(-\frac{1}{4\alpha t} \left((x_1 - y_1)^2 + (x_2 - y_2)^2\right)\right)$$

 $K_t(x, y)$ is the density of a

$$N(y, 2\alpha t \ Id)$$

If now the temperature at time 0 is given by g(x) then the solution of the heat equation is the convolution

$$\int \int K_t(x,y)g(y)dy$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 9 / 30

Discretization of the Laplacian

$$\begin{aligned} x &= (x_1, x_2) \in \mathbb{R}^2, \ f : \mathbb{R}^2 \mapsto \mathbb{R} \\ & \frac{\partial}{\partial x_1} f(x_1, x_2) \approx \frac{1}{h} \left(f(x_1 + \frac{h}{2}, x_2) - f(x_1 - \frac{h}{2}, x_2) \right) \\ & \frac{\partial^2}{\partial^2 x_1} f(x_1, x_2) \approx \frac{1}{h} \left(\frac{\partial}{\partial x_1} f(x_1 + \frac{h}{2}, x_2) - \frac{\partial}{\partial x_1} f(x_1 - \frac{h}{2}, x_2) \right) \\ & \approx \frac{1}{h} \left(\frac{1}{h} \left(f(x_1 + h, x_2) - f(x_1, x_2) \right) - \frac{1}{h} \left(f(x_1, x_2) - f(x_1 - h, x_2) \right) \right) \\ & \approx \frac{1}{h^2} \left(f(x_1 + h, x_2) + f(x_1 - h, x_2) - 2f((x_1, x_2)) \right) \\ & \frac{\partial^2}{\partial^2 x_2} f(x_1, x_2) \approx \frac{1}{h^2} \left(f(x_1, x_2 + h) + f(x_1, x_2 - h) - 2f((x_1, x_2)) \right) \end{aligned}$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 10 / 30

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Discretization of the Laplacian

$$\Delta f(x_1, x_2) = \frac{\partial^2}{\partial^2 x_1} f(x_1, x_2) + \frac{\partial^2}{\partial^2 x_2} f(x_1, x_2)$$

$$= \frac{1}{h^2} (f(x_1 + h, x_2) + f(x_1 - h, x_2) - 2f((x_1, x_2)) + \frac{1}{h^2} (f(x_1, x_2 + h) + f(x_1, x_2 - h) - 2f((x_1, x_2)))$$

Define $\mathcal{V}(x) = \{(x_1 + h, x_2), (x_1 - h, x_2), (x_1, x_2 - h), (x_1, x_2 + h)\}$ and $d(x) = \#\mathcal{V}(x)$ then

$$\triangle f(x) = \frac{1}{h^2} \left(\left(\sum_{y \in \mathcal{V}(x)} f(y) \right) - d(x) f(x) \right)$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 11 / 30

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うらぐ

Heat equation over a graph

G(V, E) a non oriented graph. $V = \{x_1, \ldots, x_n\}$ is the finite set of vertices. $E \subset V \times V$ is the set of edges. If $(x, y) \in E$, we denote $x \sim y$. Assume no edge from a vertex to itself. The degree of $x \in V$ is $d(x) = \sum_{y \in V} \delta(x \sim y)$ $f : V \mapsto R$ can be seen as a function or as a vector $(f(x_1), \ldots, f(x_n))^T$ $H : V \times V \mapsto R$ can be seen as a function or as a $n \times n$ matrix.

Define the Laplacian (choose h = 1)

$$\Delta f(x) = \left(\sum_{y \in \mathcal{V}(x)} f(y)\right) - d(x)f(x)$$

$$= \left(\sum_{y: y \sim x} f(y)\right) - d(x)f(x)$$

$$= \sum_{y \in V} (f(y)\delta(x \sim y) - d(y)f(y)\delta(x = y))$$

$$= \sum_{y \in V} (\delta(x \sim y) - d(y)\delta(x = y))f(y)$$

$$= \sum_{y \in V} H(x, y)f(y)$$

$$= Hf(x)$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 13 / 30

Laplacian

$$H(x,y) = \delta(x \sim y) - d(y)\delta(x = y)$$

$$H = A - D$$

 $A(x, y) = \delta(x \sim y)$ is the adjacency matrix of G $D(x, y) = d(x)\delta(x = y)$ is the degree matrix. D is diagonal.

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 14 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Heat Equation

Ν

 $x, y \in V$, $t \ge 0$. $K_t(x, y)$ is the temperature at x at time t when starting with a unit temperature at y at time 0.

 $K_0(x, y) = \delta(x = y)$ which in matrix notation is $K_0 = Id$ We define the heat equation for a fixed $y \in V$ as:

for each
$$x \in V$$
, for each $t \ge 0$, $\frac{\partial}{\partial t}K_t(x,y) = HK_t(x,y)$
otate $u_t(x) = K_t(x,y)$
 $\frac{\partial}{\partial t}u_t(x) = \sum_{z \in V} H(x,z)u_t(z)$
 $= \left(\sum_{z:z \sim x} u_t(z)\right) - d(x)u_t(x)$
 $= d(x)\left(\left(\frac{1}{d(x)}\sum_{z:z \sim x} u_t(z)\right) - u_t(x)\right)$

0

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 15 / 30

Heat Equation

Claims:

The heat equation admits a unique solution $K_t = e^{tH}$

$$e^{tH} = Id + tH + \frac{t^2}{2!}H^2 + \frac{t^3}{3!}H^3 + \dots$$
$$e^{tH} = \lim_{k \to +\infty} (Id + \frac{t}{k}H)^k$$

Starting with a temperature $\pi(x)$, $x \in V$, the solution to the heat equation is $K_t \pi$ If for all x, $\pi(x) \ge 0$ and $\sum_{x \in V} \pi(x) = 1$ then for all $x \in V$ and all $t \ge 0$, $K_t \pi(x) \ge 0$ and $\sum_{x \in V} K_t \pi(x) = 1$ If G is connected $K_t \pi > 0$.

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

Markov Chain Interpretation

Recall $K_t = \lim_{k \to +\infty} (Id + \frac{t}{k}H)^k$ Fix t > 0, choose a large enough k, Define a Markov Chain over V with $X_0 \sim \pi_0$

$$P(X_{n+1} = y | X_n = x) = (Id + \frac{t}{k}H)(x, y)$$

= $\delta(x = y) + \frac{t}{k}(\delta(x \sim y) - d(x)\delta(x = y))$
= $\delta(x = y)(1 - \frac{t}{k}d(x)) + \frac{t}{k}\delta(x \sim y)$

Then $P(X_k = y) \approx (K_t \pi_0)(y)$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 17 / 30

Generalized Laplacian

Define a weight function $f : E \mapsto R$ stricty positive, (symmetric) The *generalized* Laplacian is then

$$H(x,y) = f(x,y)\delta(x \sim y) - d(x)\delta(x = y)$$

with $d(x) = \sum_{y:y \sim x} f(x, y)$ then, as previously, The heat equation admits a unique solution $K_t = e^{tH}$ Starting with a temperature $\pi(x), x \in V$, the solution to the heat equation is $K_t \pi$ If for all $x, \pi(x) \ge 0$ and $\sum_{x \in V} \pi(x) = 1$ then for all $x \in V$ and all $t \ge 0$,

 $K_t \pi(x) \ge 0$ and $\sum_{x \in V} K_t \pi(x) = 1$ If G is connected then $K_t \pi > 0$.

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

Examples

• Complete graph with K vertices. $x \sim y \iff x \neq y$

$$K_t(x,y) = \frac{1}{K}(1 - e^{-Kt}) + e^{-Kt}\delta(x = y)$$

► Vertices are binary strings of length K. x ~ y ⇐⇒ Hamming(x, y) = 1

$$K_t(x,y) = \frac{1}{2^K} (1 + e^{-2t})^K (\tanh(t))^{H(x,y)}$$

- Diffusion kernels are known for closed chain and certain regular trees
 Could measure Discussion 11
- Small graphs. Diagonalize H

Unigram Models from Diffusion

Choose Set of vertices = V. Choose the edges ...

$$\pi_t(x) = \sum_{y} K_t(x, y) \pi_0(y)$$
$$= \sum_{y} K_t(x, y) \frac{1}{n} \sum_{i=1}^n \delta(y = x_i)$$
$$= \frac{1}{n} \sum_{i=1}^n K_t(x, x_i)$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 20 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Unigram Models from Diffusion. Complete Graph

Choose the complete graph over V. $x \sim y \iff x \neq y$. Start at π_0 Then

$$\pi_{t}(x) = \frac{1}{n} \sum_{i=1}^{n} K_{t}(x, x_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{K} (1 - e^{-Kt}) + e^{-Kt} \delta(x = x_{i}) \right)$$

$$= \frac{1}{K} (1 - e^{-Kt}) + e^{-Kt} \frac{n(x)}{n}$$

$$= \frac{n(x) + \beta}{n + \beta K}$$

Add- β estimator with

$$\beta = \frac{n}{K}(e^{Kt} - 1)$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 21 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Unigram Models from diffusion. Data dependent graph

Define the edges as follows: $x \sim y \iff |n(x) - n(y)| \le 1$ Computation of the kernel is difficult ... Recall

$$K_t = \lim_{k \to +\infty} (Id + \frac{t}{k}H)^k$$

Compute $(Id + \frac{t}{3}H)^3 \pi_0$ with $t = \frac{1}{K}$ yields fast and interesting results, see later.

Normalized Diffusion

G = (V, w) a weighted graph. $w : V \times V \to \mathbb{R}$ $w(x, y) = w(y, x), w(x, y) \ge 0$ and w(x, x) > 0 w(x, y) is interpreted as the *similarity* between x and y. Define $d(x) = \sum_{y \in V} w(x, y)$ Define a Markov chain X_0, X_1, \ldots over V with initial distribution π_0 Define a transition matrix $P(X_1 = y | X_0 = x) = T(x, y) = d^{-1}(x)w(x, y)$ Remark that T is not symmetric.

Normalized Diffusion

Recall
$$P(X_1 = y | X_0 = x) = T(x, y) = d^{-1}(x)w(x, y)$$

 $\pi_1(y) = P(X_1 = y) = \sum_{x \in V} T(x, y)\pi_0(x),$
 $\pi_k(y) = P(X_k = y) = \sum_{x \in V} T^k(x, y)\pi_0(x),$
If G is connected, (there is a path with > 0 weights between any two
vertices)

$$\lim_{k \to +\infty} \pi_k(y) = \pi(y) = \frac{d(y)}{\sum_{x \in V} d(x)}$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 24 / 30

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のQ@

Examples

Observe $x_1, \ldots, x_n, x_i \in V$

$$\pi_0(x) = \frac{1}{n} \sum_{i=1}^n \delta(x = x_i)$$

$$\pi_{1}(y) = \sum_{x \in V} T(x, y) \frac{1}{n} \sum_{i=1}^{n} \delta(x = x_{i})$$
$$= \frac{1}{n} \sum_{i=1}^{n} T(x_{i}, y)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \frac{w(x_{i}, y)}{d(x_{i})}$$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 25 / 30

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のQ@

Example 1

$$|V|=K$$
, Choose $w(x,y)=lpha\delta(x=y)+1$, $lpha
eq 0$
Then $d(x)=lpha+K$

$$\pi_1(y) = \frac{1}{n} \sum_{i=1}^n \frac{w(x_i, y)}{d(x_i)}$$
$$= \frac{1}{n} \frac{1}{\alpha + K} \sum_{i=1}^n (\alpha \delta(x_i, y) + 1)$$
$$= \frac{1}{n} \frac{1}{\alpha + K} (\alpha n(y) + n)$$
$$= \frac{\alpha}{\alpha + K} \frac{n(y)}{n} + \frac{K}{\alpha + K} \frac{1}{K}$$
$$= \frac{n(y) + \frac{n}{\alpha}}{n + \frac{n}{\alpha} K}$$

Add- β estimator with $\beta=\alpha^{-1} n$

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 26 / 30

Example 2

$$|V| = K$$
, Choose $w(x, y) = \delta(|n(x) - n(y)| \le 1)$
 $d(x) = r_{n(x)-1} + r_{n_x} + r_{n(x)+1}$
 r_j is the number of words observed j times.

$$\pi_1(y) = \frac{1}{n} \sum_{i=1}^n \frac{\delta(|n(x_i) - n(y)| \le 1)}{r_{n(x_i)-1} + r_{n(x_i)} + r_{n(x_i)+1}}$$
$$= \frac{1}{n} \sum_{j=n(y)-1}^{n(y)+1} \frac{jr_j}{r_{j-1} + r_j + r_{j+1}}$$

If n(y) = 0, $\pi_i(y) = \frac{1}{n} \frac{r_1}{r_0 + r_1 + r_2}$, $\sum_{y:n(y)=0} \pi_1(y) = \frac{1}{n} \frac{r_1}{1 + \frac{r_1}{r_0} + \frac{r_2}{r_0}}$ similar to Good-Turing when r_0 is large.

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

February 16, 2007 27 / 30

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Experiments (joint work with Damianos Karakos)

In our experiments, we used Sections 00-22 (consisting of ~ 10^6 words) of the UPenn Treebank corpus for training, and Sections 23-24 (consisting of ~ 10^5 words) for testing. We split the training set into 10 subsets, leading to 10 datasets of size ~ 10^5 tokens each. Averaged results are presented in the tables below for various choices of the training set size. We show the mean code-length, as well as the standard deviation (when available). In all cases, we chose $K = 10^5$ as the fixed size of our vocabulary.

Experiments

	mean code length	std
$\pi_{\beta}, \beta = 1$	11.10	0.03
π_{GT}	10.68	0.06
π_{ND}	10.69	0.06
πκρ	10.74	0.08

Table: Results with training set of size $\sim 10^5.$

	mean code length	
$\pi_{\beta}, \beta = 1$	10.34	
π_{GT}	10.30	
π_{ND}	10.30	
π _{KD}	10.31	

References:

- diffusion Kernels on Graphs and Other discrete Spaces Risi Imre Kondor and John Lafferty
- A General Framework for Adaptive Regularization Based on Diffusion Processes on Graphs Arthur D. Szalam, Mauro Maggioni and Ronald R. Coifman

Thank You

Bruno Jedynak (JHU)

Diffusion Kernels on Graphs

(日) (周) (三) (三)