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Abstract

We consider a sequence of three models for skin detection built from a large col-
lection of labelled images. Each model is a maximum entropy model with respect
to constraints concerning marginal distributions. Our models are nested. The first
model, called the baseline model is well known from practitioners. Pixels are con-
sidered independent. Performance, measured by the ROC curve on the Compaq
Database is impressive for such a simple model. However, single image examina-
tion reveals very irregular results. The second model is a Hidden Markov Model
which includes constraints that force smoothness of the solution. The ROC curve
obtained shows better performance than the baseline model. Finally, color gradient
is included. Thanks to Bethe tree approximation, we obtain a simple analytical ex-
pression for the coefficients of the associated maximum entropy model. Performance,
compared with previous model is once more improved.
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1 Introduction

1.1 skin detection

Skin detection consists in detecting human skin pixels from an image. The
system output is a binary image defined on the same pixel grid as the input
image.

Skin detection plays an important role in various applications such as face
detection [1], searching and filtering image content on the web [2][3]. Research
has been performed on the detection of human skin pixels in color images
and on the discrimination between skin pixels and “non-skin” pixels by use of
various statistical color models. Some researchers have used skin color models
such as Gaussian, Gaussian mixture or histograms [4] [5]. In most experiments,
skin pixels are acquired from a limited number of people under a limited range
of lighting conditions.

Unfortunately, the illumination conditions are often unknown in an arbitrary
image, so the variation in skin colors is much less constrained in practice. This
is particularly true for web images captured under a wide variety of conditions.
However, given a large collection of labeled training pixels including all human
skin (Caucasians, Africans, Asians) we can still model the distribution of skin
and non-skin colors in the color space. Recently, in [6], the authors proposed to
estimate the distribution of skin and non-skin color using labeled training data.
The comparison of histogram models and Gaussian mixture density models
estimated with EM algorithm was analyzed for the standard 24-bit RGB color
space. The histogram models were found to be slightly superior to Gaussian
mixture models in terms of skin pixel classification performance.

A skin detection system is never perfect and different users use different cri-
teria for evaluation. General appearance of the skin-zones detected, or other
global criteria might be important for further processing. For quantitative
evaluation, we will use false positive rate and detection rate. False positive
rate is the proportion of non-skin pixels classified as skin and detection rate is
the proportion of skin pixels classified as skin. The user might wish to combine
these two indicators his own way depending on the kind of error he is more
willing to afford. Hence we propose a system where the output is not binary
but a floating number between zero and one, the larger the value, the larger
the belief for a skin pixel. The user can then apply a threshold to obtain a
binary image. Error rates for all possible thresholding are summarized in the
Receiver Operating Characteristic (ROC) curve.

We have in our hands the Compaq Database [6]. It is a catalog of almost
twenty thousand images. Each of them is manually segmented such that the



skin pixels are labelled. Our goal in this paper is to explore different ways in
which this set of data can be used to perform skin detection on new images.
We will use Markov random field approach [7] [8] combined with Maximum
Entropy Modeling [9] [10], referred to as MaxEnt.

1.2 Methodology

Maximum Entropy Modeling (MaxEnt) is a method for inferring models from
a data set. See [9] for the underlying philosophy. It works as follows: 1) choose
relevant features 2) compute their histograms on the training set 3) write down
the maximum entropy model within the ones that have the feature histograms
as observed on the training set 4) estimate the parameters of the model 5)
use the model for classification. This plan has been successfully completed
for several tasks related to speech recognition and language processing. When
working with images, the graph underlying the model is the pixel lattice. It
has many nodes and many loops. Task 4) is much more difficult. A break
through appeared with the work in [11] on texture simulation where 1) 2) 3)
4) was performed for images and 5) replaced by simulation.

We adapt this methodology to skin detection as follows: in 1) we specialize in
colors and skinness for one pixel and two adjacent pixels. In 2) we compute
the histogram of these features in the Compaq manually segmented database.
Models for 3) are then easily obtained. In 4) we use the Beth tree approx-
imation, see [12]. It consists in approximating locally the pixel lattice by a
tree. The parameters of the MaxEnt models are then expressed analytically
as functions of the histograms of the features. This is a particularity of our
features. In 5) we use the Gibbs sampler algorithm for inferring the probability
for skin at each pixel location.

The rest of this paper is organized as follows: After setting up the notations
in section 2, we present in section 3 a very simple and crude model that we
refer to as the baseline model. This model is commonly used by practitioners.
In section 4, we present a hidden Markov Random Field model that takes into
account the spatial regularity of skin and non-skin regions. A novel method for
parameter estimation is explored. In section 5, we examine models that take
into account joint color and skinness distribution for nearby pixels. Finally, in
Section 6 we present concluding remarks.



2 Notations

Let’s fix the notations. The set of pixels of an image is S. The color of a pixel
s € Sis x,. It is a 3 dimensional vector, each component being usually coded
on one octet. We notate C' = {0, ...,255}%. The ”skinness” of a pixel s, is y,
with y; = 1 if s is a skin pixel and y; = 0 if not. The color image, which is the
vector of color pixels, is # and the binary image made up of the y,’s is notated

Y.

Let’s assume for a moment that we knew the joint probability distribution
p(z,y) of the vector (z,y), then Bayesian analysis tells us that, whatever cost
function the user might think of, all that is needed is the posterior distribution
p(y|z). From the user’s point of view, the useful information is contained in
the one pixel marginal of the posterior, that is, for each pixel, the quantity
p(ys = 1|x), quantifying the belief for skinness at pixel s given the full color
image.

In practice the model p(z, y) is unknown. Instead, we have the Compaq Database.
It is a collection of samples

(@, yD),...., (5, 5™}

where for each 1 < i < n = 18,696, 2 is a color image and 3 is the associ-
ated binary skinness image. We assume that the samples are independent of
each other with distribution p(z, y). The collection of samples is referred later
as the training data. Probabilities are estimated by using classical empirical
estimators and are denoted with the letter q.

In what follows, we build models for the joint probability distribution of color
and skinness image using maximum entropy modeling.

3 Baseline Model
3.1 Defining the model

First, we build a model that respects the one pixel marginal observed in the
Compaq Database. That is, consider the set of probability distributions p(z, y)
that verify:

Co: Vs € S,Vz, € C,Vy, € {0,1}, p(z5,y5) = q(xs, Ys) (1)

In (1), the quantity on the right side of the equal sign is the proportion of
pixels with color x; and label y, in the training data. The MaxEnt solution



under Cy is the independent model:

p(z,y) = 1 a(zs,vs) (2)

SES

The proof is postponed in Appendix A. Using Bayes formulae, one then ob-
tains:
p(ylz) = T a(ys|zs) (3)
s€S
We call the model in (3) the baseline model. It is the most commonly used
model in the literature [4] [5].

3.2  FEzxperiments

Each term of the product on the right side of (3) can be computed using
probabilities estimated on the training data as follows using Bayes formula:

4(uals) = @qus)q(ys) (4)

with

q(xs) = Z Q(xs|ys)q(ys)

ys=0

Evaluation of the quantities in (4) is based on two 3-dimension histograms,
q(zslys = 1) and g(zs|ys = 0) describing the one pixel color skin regions and
non-skin regions respectively. Several authors have tried to get a parametric
expression for these histograms as a mixture of Gaussian distribution [6] [1].
Our experience is that the Compaq Database is large enough so that crude
histograms made with 512 color value per bin uniformly distributed do not
over-fit. Each histogram is then made of 32® bins. The ROC curve for this
model is presented in figure 3. Experiments for this model, as well as for the
other ones were made using the following protocol. The Compaq database
contains about 18,696 photographs. It was split into two almost equal parts
randomly. The first part, containing nearly two billion pixels was used as
training data while the other one, the test set, was let aside for ROC curve
computation. In Figure 4, first column displays test images. The second col-
umn displays grey level images. The grey-level is proportional to the quantity
p(ys = 1|z) evaluated with the Baseline model. On the top image, skin pix-
els are not detected, especially on the neck of the rightmost person. On the
bottom image, we notice many false positives. Figure 3 show ROC curves com-
puted from 100 images (around 10 millions pixels), randomly extracted from
the test set. The Baseline model (with crosses) permit to detect more than
80% of the skin pixels with less than 10% of false positive rate.



4 Hidden Markov Model

4.1 Defining the model

The baseline model is certainly too loose and one might hope to get better
detection results by constraining it to a model that takes into account the
fact that skin zones are not purely random but are made of large regions with
regular shapes. Hence, we fix the marginals of y for all the neighboring pixels
couples. We use 4-neighbor system for simplicity in all that follows. For 2
neighboring pixels s and ¢, the expected proportion of times that we observe
(ys = a,ys = b) should be ¢(a,b) for a = 0,1 and b = 0, 1, the corresponding
quantities measured on the training set. We assume that the model is isotropic,
aggregating the cases where s and ¢ are in vertical position to the cases where
s and t are in horizontal position. Hence let us define the following constraints:

where < s, > defines a couple of neighbor pixels.

The MaxEnt model under Cy N D is then the following Gibbs distribution:

p(z,y) = [] a(@slys) exp[ D (ao(1 — ys) (1 — i) + a1ysyy)] (6)

SES <s8,t>

Here and thereafter, the sign ~ means equality up to a function that might
depend on x but not on y. ag et a; are constant that must be set up such that
the constraints are satisfied. The proof is in Appendix A. From (6) one then
obtains the following Hidden Markov Model (HMM):

p(ylz) = [ a(zslys)p(y) (7)

with
p(y) = ﬁ exp| 3 (a0(1 — 3:)(1 = v0) + 01300 (8)

where Z(ay, a1) is a normalization function also known in statistical mechanics
as the partition function.

The model in equation (8) is known as a special case of a Potts model, see [7]
and [13].



4.2  Parameter estimation

Parameter estimation in the context of MaxEnt is still an active research
subject, especially in situations where even the likelihood function cannot be
computed for a given value of the parameters. This is the case here since
the partition function cannot be evaluated even for very small size images.
One line of research consists in approximating the model in order to obtain
a formula where the partition function no longer appears: Pseudo-likelihood
[14] [15], mean field methods [16] [17], as well as Bethe Trees models [12]
are among them. Another possibility is to use stochastic gradient as in [18].
Here we explore a related method based on the concept of Julesz ensembles
defined in [19]. We learn from this work that one can sample an image from
the model defined in (8) without knowing the parameters ag and a;. This is
true only in the asymptotic of an infinite image but we will apply the result
for a large image, say 512x512 pixels. In a second step, we use this sample
image in order to estimate the parameters ay and a;. This is done using the
quantity p(ys = 1|y()) which is the probability to observe the label 1 at pixel
s given all the other values y;, for t € S and ¢ # s. For the model in (8), this
quantity can be easily analytically computed as

P(Ys = 1y(s)) = (a1 + ao)ns(1) — 4ao) (9)

where ¢(z) = (1 + e®)~! is the sigmoid (also known as logistic) function
and ng(1) is the number of neighbors of s that take the label 1. This sum
can take only five different values. For each one, the quantity p(y, = 1|y))
can be estimated from the sample image, leading to five linearly independent
equations from which parameters ay and a; can be estimated. Now, returning
to how to obtain a sample from the model in (8). The key idea which originated
in statistical physics [20], is that the MaxEnt model we are looking for is, in
an appropriate asymptotic meaning, the uniform distribution over the set of
images that respect the constraints D. Now, in the absence of phase transition,
sampling from this set can be achieved numerically using simulated annealing,
see [21].

4.8 FEzrperiments

Figure 1 shows a 512 x 512 sample of the prior model defined in equation
(8). One can qualitatively appreciate how well it models skin regions. No-
tice that vertical and horizontal borders are preferred. This is a bias of the
neighborhood system. Choosing 8 neighbors could improve it at the expense
of computational load. The quantities Pr(Y; = ys, Y; = y;), for neighboring
pixels s and ¢ are presented in figure 1, first, as estimated from the training
set, and secondly, as estimated from the image in the same figure. The con-



database values | image values

Pr(Y,=0,Y, = 0) 0.828 0.827991
Pr(Y,=1Y,=1) 0.159 0.151646

Fig. 1. Top: a sample image from the prior distribution used in the Hidden Markov
Model. Bottom: probabilities estimated from the training set and from the image
on the top.

straints are nearly respected. Parameter estimation from the image in figure
1 leads to the numerical values: ag = 3.76 and a; = 3.94.

For a new image z, skin detection requires to compute for each pixel the
quantity p(ys|z). We use Markov Chain Monte Carlo. We generate, using the
Gibbs sampler algorithm [7], a sequence of label images

ni

ylﬁyQ""iy J""y

n2

with stationary distribution (7). Then, we estimate the quantity p(ys|z) by

the empirical mean

1 ™ ()
- J
n2 —nl . z Ys

j=ni1+1

Our working parameters are n; = 1 and ny = 100. Two output images are
presented in Figure 4. It compares favorably with the Baseline model. The
ROC curve in Figure 3 indicates a drop of about 1% in false positive for the
same detection rate as the Baseline model.

5 First Order Model
5.1 Defining the model

The baseline model was built in order to mimic the one pixel marginal of the
joint distribution of color and skinness as observed on the database. Then,
in building the HMM model we added constraints on the prior skinness dis-
tribution in order to smooth the model. Now, we constrain once more the
MaxEnt model by imposing the two-pixel marginal that is p(xs, xt, ys, y1), for



4-neighbor s and ¢, to match those observed in the training data. Hence we
define the following constraints:

Ci:V<s,t>eS xS, Ve, € C,Vry € C,Vy, € {0,1},Vy, € {0,1}, (10)

P(Tsy T, Ys, ) = q(Ts, Tty Yso Yt)

The quantity q(zs, zs, ys, y¢) is the expected proportion of times we observe
the values (x4, x4, ys, y¢) for a couple of neighboring pixels, regardless of the
orientation of the pixels s and ¢ in the training set.

Clearly, C; C (Co N D) C Cy. The solution to the MaxEnt problem under C; is
then, see Appendix A, the following Gibbs distribution:

p(z,y) = exp[ Y My, e, Ys, Yr)] (11)

<s,t>

where A(s, t,zs, x4, ys, y;) are parameters that should be set up to satisfy the
constraints. From (11), one gets

p(y|l‘) o eXp[ Z )\(Sata Lsy Tty Ysy yt)] (12)
<8, t>

Assuming that one color can take 2563 values, the total number of parameters
is 2563 x 2562 x 2 x 2. The previously mentioned parameter estimation methods
clearly do not apply. In [12], the authors present a tree approximation to the
pixel grid, called “Bethe tree”, after the physicist H.A. Bethe who used trees in
statistical mechanics problems. Bethe trees permit us to compute analytically
an approximation of the parameters in the model (11) and consequently in
(12) as we shall see now.

5.2  Parameter estimation and Bethe Tree Approrimation

Bethe tree have been introduced in computer vision as a way of approximating
estimators in Markov Random Field models in [12]. We shall revisit this work
in connection with maximum entropy models. The key idea is to provide a tree
that approximates locally the pixel lattice. More precisely, for each pixel s, we
consider a sequence of trees 7](5), 75(5), ... of increasing depth. The construction
is as follow: the root node of the tree is associated with s. For each neighbor
t of s in the pixel-graph, a child node indexed by ¢ is added to the root
node. This defines 7'1(5). Subsequently, for each u, neighbor of a neighbor of s,
(excluding s itself), a grandchild node indexed by u is added to the appropriate
child node. This defines 7;(5), and so on, see [12] for a detailed account. An
important remark is that a single pixel might lead to several different nodes in



Fig. 2. Left: a Bethe tree of depth 1 rooted at s. Right: a Bethe tree of depth 2
rooted at s

the tree! For example 7;(5) is built with s, the neighbors of s and the neighbors
of these. Using 4-neighbors, and assuming that s is not in the border of the
image, this makes up 13 pixels, but the associated tree has 17 nodes, 4 pixels
being replicated twice each, see figure 2.

Let us consider the following model

x,y) ~ exp H(x;y) with
p(z,y) ~ exp H(z;y) (13)

H(:L" y) = Z<s,t> log Q(Isa Tt Ys, yt) - n(s) Zseé log Q(xsa ys)

where n(s) is the number of neighbors of s and $ is the set of interior pixels
of S, that is the ones that have exactly four neighbors. First, remark that the
model in (13) is a special case of model in (11). Second, under the Beth tree
approximation, with arbitrarily finite depth, the model in (13) satisfies the
constraints. Indeed, this is a particular case of a more general result, see [22],
saying that any pairwise MRF defined on a tree graph can be written as a
function of it’s marginal distributions as in (13). We can then conclude that
under the Bethe Tree approximation, (13) is the MaxEnt solution for C; .

Now, let us see how in practice one can use the model in (13). As for the
HMM model, the objective is to obtain simulations using the Gibbs sampler
algorithm. This requires to compute the conditional distribution of a label y;
given all the other labels and the image of the colors z. For s € S , we obtain

p(ys = 1y, x) = ¢(U(z;y)) with

s=Lyt|Ts,T s=1|zs
U(z;y) = Dtev(s) 108 W — n(s) log %

(14)

Where ¢ is the logistic function and V(s) are the neighbors of s.

10



5.3 Experiments

Now let’s see how each term in (14) can be evaluated. First,

q(ys = 1|x,) _ q(zslys = 1) qys = 1)
Q(ys - 0|$s) Q(ms‘ys - 0) Q(ys - 0)

(15)

and the quantities on the right side of (15) are easily obtained from the
database as before. Second,

q(ys = Lplos, 2) _ q(@s, elys = 1, 41) q(ys = 1, 2
q(ys = 0, yelzs, 2) g5, zelys = 0,y) q(ys = 0, 1)

(16)

Now the quantities on the right side of (16) involving the color values can-
not be directly extracted from the database without drastic over-fitting since
the histogram involved have a support of dimension six. Hence some kind of
dimension reduction is needed.

One natural solution is to assume conditional independence, that is

Q(xsaxth/s = 17yt) — Q(xs‘ys = 1) (17)
q(s, ze|ys = 0,4:)  q(xs]ys = 0)

The obtained model is then a HMM model, as in equation (7). Hence, Bethe
tree method gives another way to estimate parameters ay and a;. Obtained
values are ag = 3.94 and a; = 4, which are close to the values obtained in
section 4.

A more promising dimension reduction procedure is the following approxima-
tion:

q(zs, e|ys, ye) ~ q(zs5|ys)q(ze — 25|ys, yr) (18)

That is, we assume that the color gradient at s, measured by the quantity
Ty — T, 1S, given the labels at s and ¢, independent of the actual color x;.
Evaluation of the right side of the sign ~ requires to compute 6 histograms
with a support of dimension 3 only. We use 323 bins of 512 colors each.

Experiments with this model are presented in figures 3 and 4. The setup is
the same as for the HMM model. In figure 4, one can visually appreciate the
improvement in localization of the skin zones compared to the HMM model.
Bulk results in the ROC curve of Figure 3 show a slight improvement of
performance too.

11
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Fig. 3. Receiver Operating Characteristics (ROC) curve for each model. x-axis is the
false positive rate, y-axis is the detection rate. Baseline model is shown with crosses,
HMM model with triangles, while the first order model is shown with squares.

Fig. 4. First column: original color images. The image on top is 225 x 180 pixels
. The image on the bottom is 541 x 361 pixels. Second column: Baseline model.
Third column: hidden Markov model. Fourth column: first order model. In the
computed images, the grey level is proportional to the skin probability evaluated
with the specified model.

6 Conclusions

We have considered a sequence of three models for skin detection built from
a large collection of labelled images. For a given color image, such a model
puts weight on binary images defined on the same pixel grid. Each model is a
maximum entropy model with respect to constraints. These constraints con-
cern marginal distributions. Our models are nested. The first model, called the
baseline model is well known from practitioners. Pixels are considered as inde-
pendent. Performance, measured by the ROC curve on the Compaq database

12



is impressive for such a simple model. However, single image examination re-
veals very irregular results. The second model is a Hidden Markov Model.
It includes constraints that force smoothness of the solution. The ROC curve
obtained shows better performance than the baseline model. Finally, color gra-
dient is included in the set of constraints. Thanks to Bethe tree approximation,
we obtain a simple analytical expression for the coefficients of the associated
MaxEnt model. Performance, compared with previous model is once more
improved.

For many applications involving skin detection as an intermediate stage, pro-
cessing time is of major importance. In future work we plan to replace the
stochastic sampling algorithm by a deterministic scheme as Mean Field method
[16] or Belief Propagation [23] method in order to meet the required time con-
straints.

A Appendix

Here we shall derive a MaxEnt solution for the joint distribution p(z,y) under
the constraints Cyp. See (1).

Remark that the constraints in (1) are expectations with respect to p. Indeed,

P(Ts,Ys) = Ep[0e,(Xs)dy, (Y5)] (A1)
with
lifa=0
da(b) =
Oifa#b

Then, following Jaynes’ argument [9], the MaxEnt solution under Cy is unique
if it exists, and can be obtained using Lagrange multipliers. One gets:

p(z,y) = exp(Xo + D A(s, Ty, ys)) (A.2)

SES

Where the parameters A should be set up such that the constraints are satis-
fied. Now if

Vs € C,Vys € {0,1}, ¢(xs,ys) > 0 (A.3)

then one can choose

Ao = 0 and A(s, zs,ys) = logq(zs, ys) (A.4)

13



which leads to the unique solution of the MaxEnt problem:

p(I, y) = H Q(-'ESa ys) (A5)

sES

Condition in (A.3) is saying that there is no empty bin in the empirical joint
histogram ¢(zs,ys). This will be our case. MaxEnt solutions still exist when
(A.3) is not verified.

Here we shall obtain a MaxEnt solution for the joint distribution p(z,y) under
CoND, see (1) and (5).

As for Cy, the constraints in D are expectations. Indeed,

Vys € {0,1}, Yy, € {0, 1}, p(ys, 1) = Ep[0y, (Y5)6y, (Y2)] (A.6)
Using once more Lagrange multipliers, one obtains that the MaxEnt solution,
if it exists, is
p(z,y) = exp H(z,y, Ao, A1, A2, A3) with
H(z,y, Ao, A1, A2, A3) = Ao + Xes Ai(S, Ts, Ys) +
Ycsisesxs A2(8, 1) (1 —ys) (1 —ye)+

Ycstsesxs A3(8, 0)ysyi

(A7)

where < s,¢ > is a couple of 4-neighbors pixels and Ay, A1, A2, A3 define pa-
rameters that should be set up such that the constraints are satisfied. Starting
from (A.7),remark that

pEsys) = Y, Y, px,y) =exp[ho+ Mi(s, 25, u5)]9(s,ys)  (A8)

T4 tE€StF£S Yy tES t#s

with g(s,ys) a function that doesn’t depend on z;. Now,

p(ys) - Zp(xs, ys) = eXPP\o]!J(Sa ys) Z eXp[/\1 (Sa Ts, ys)] (Ag)
hence
p(ms‘ys) — p(xs, ys) _ exp[/\l (8: Ts, ys)] (AlO)

p(ys) B Ews eXPP\l(SaﬂJs,ys)]

Since p(z,y) lies in Cy, it verifies: p(zs|ys) = q(zs|ys). Assuming positivity
(A.3), we can choose

/\1(37 xsays) = logq(xs‘ys) (A'll)

Now, constraints in D, see (5), do not depend on the location < s, >. Hence,
one can reduce to translation invariant models as in (6).

14



Constraints in Cy, see (10) are also expectations. Indeed,

P(Zs, Tt Ysy Y1) = Ep[0(a,)(Xs)Oae) (X)) (Y5) Oy (Y2)] (A.12)

Using Lagrange multipliers, one obtains (11).
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