Small Sample p.m.f. Estimation and an Application to Language Modeling

Bruno Jedynak

Dept. of Applied Mathematics and Center for Imaging Science with Sanjeev Khudanpur, Ali Yazgan, Damianos Karakos

Center for Language and Speech Processing
The Johns Hopkins University
bruno.jedynak@jhu.edu
http://cis.jhu.edu/~bruno

Setting

x_{1}, \ldots, x_{n} an iid sample of size n of an unknown distribution [or point mass function (pmf)] p.
Each $x_{i} \in\left\{a_{1}, \ldots, a_{k}\right\}$ finite alphabet of numbers, species, words, DNA patterns, ...
we'll use $\{1, \ldots, k\}$ in what follows.
our goal : estimate p when

- small sample situation $n \ngtr>k$
- domain specific information is available

counts,empirical distribution, type

$x=\left(x_{1}, \ldots, x_{n}\right)$ an iid sample of size n of a pmf p.
build the counts $\left(n_{1}, \ldots, n_{k}\right)$,
$n_{j}=\#\left\{x_{i}, 1 \leq i \leq n\right.$, such that $\left.x_{i}=j\right\}$
visualize it .. histogram

give it names and notations :
$\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$ is the empirical distribution or type of x.

Language modeling

the	56837	of	27155	in	20080
$\langle\backslash s>$	47108	to	26274	and	19579
N	36068	a	23857	's	11058
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
california-backed	1	logs	1	lengthens	1

words counts obtained from the UPENN repository database. Three first lines are the largest counts observed. $<\backslash s>$ stands for "end of sentence" and N stands for "numerical expression". This set contains $1,021,203$ words. The number of words seen at least once is 37,000 .

Likelihood, Kulback-Liebler divergence and Shannon

 entropy$x=\left(x_{1}, \ldots, x_{n}\right)$ a sample of size n of a pmf $p=\left(p_{1}, \ldots, p_{k}\right)$,
$x_{i} \in\{1, \ldots, k\}$. The type of x is $\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$.
Let's compute the log - base 2 - likelihood of the data x

$$
\begin{aligned}
\log p(x) & =\log \prod_{i=1}^{n} p_{x_{i}}=\log \prod_{j=1}^{k} p_{j}^{n_{j}} \\
& =n \sum_{j=1}^{k} \frac{n_{j}}{n} \log \frac{p_{j}}{\frac{n_{j}}{n}} \frac{n_{j}}{n} \\
& =-n\left(\sum_{j=1}^{k} \frac{n_{j}}{n} \log \frac{\frac{n_{j}}{n}}{p_{j}}-\sum_{j=1}^{k} \frac{n_{j}}{n} \log \frac{n_{j}}{n}\right) \\
& =-n(D(\hat{p}, p)+H(\hat{p}))
\end{aligned}
$$

Why (not) using the Maximum Likelihood Estimator

- $\hat{p} \rightarrow p$ a.s. fundamental theorem of statistics.
- when k is large, there might be many values for which $p_{i} \ll \frac{1}{n}$. In this case, with high probability, $\hat{p}_{i}=0$. Leads to a bias in entropy : as soon as $p \neq \delta_{j}$,

$$
E_{p}(H(\hat{p}))<H(p)
$$

- what about prior knowledge ?

Alternatives to the Maximum Likelihood Estimator

- generic
- Bayesian estimates with Dirichlet prior
- Minimax estimates
add- β rules

$$
\tilde{p}_{i}=\frac{n_{i}+\beta}{n+\beta k}=(1-\lambda) \frac{n_{i}}{n}+\lambda \frac{1}{k}, \text { with } \lambda=\frac{\beta k}{n+\beta k}
$$

- specific
- Good-Turing in langage modeling
- Bayesian estimates with specific prior

The "Maximum Likelihood Set"

$x=\left(x_{1}, \ldots, x_{n}\right)$ a sample of size n. The type of x is
$\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$.
The Maximum Likelihood Set (MLS) is the set of pmf's that put more mass on the observed counts than on any other set of counts possible for the same sample size.

$$
\begin{array}{r}
\mathcal{M}(\hat{p})=\left\{p=\left(p_{1}, \ldots, p_{k}\right), \forall\left(n_{1}^{\prime}, \ldots, n_{k}^{\prime}\right), \sum_{j=1}^{k} n_{j}^{\prime}=n\right. \\
\left.\operatorname{Prob}_{p}\left(n_{1}, \ldots, n_{k}\right)>=\operatorname{Prob}_{p}\left(n_{1}^{\prime}, \ldots, n_{k}^{\prime}\right)\right\} \Leftrightarrow \\
\left.\frac{n!}{n_{1}!\ldots n_{k}!} \prod_{l=1}^{k} p_{l}^{n_{l}} \geq \frac{n!}{n_{1}^{\prime}!\ldots n_{k}^{\prime}!} \prod_{l=1}^{k} p_{l}^{n_{l}^{\prime}}\right\}
\end{array}
$$

The "Maximum Likelihood Set" (continued)

$$
\begin{aligned}
\hat{p}= & \left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right) \\
& \frac{n!}{n_{1}!\ldots n_{k}!} \doteq 2^{n H(\hat{p})} \text { where } a_{n} \doteq b_{n} \Longleftrightarrow \frac{1}{n} \log \left(\frac{a_{n}}{b_{n}}\right) \rightarrow 0
\end{aligned}
$$

$$
\text { and recall that } \prod_{l=1}^{k} p_{l}^{n_{l}}=2^{-n(D(\hat{\rho}, \rho)+H(\hat{\rho}))}
$$

$$
\text { so that } \operatorname{Prob}_{p}\left(n_{1}, \ldots, n_{k}\right) \doteq 2^{-n D(\hat{p}, p)}
$$

$$
\text { hence } \mathcal{M}(\hat{p}) \approx\left\{p ; \forall \hat{p}^{\prime}, D(\hat{p}, p) \leq D\left(\hat{p}^{\prime}, p\right)\right\}
$$

Characterization of the "Maximum Likelihood Set"

Let $\left(n_{1}, \ldots, n_{k}\right)$ be the counts. Let's define a neighborhood relationship in the set of types with denominator n. The neighbors of (n_{1}, \ldots, n_{k}) are the types obtained by moving a single sample from one value to another one. If a pmf is in the MLS then it has to put more mass on the observed type than on any of its
neighbors. It turns out that the converse is true which leads to the following

Proposition

A pmf $p=\left(p_{1}, \ldots, p_{k}\right)$ on the set $\{1, \ldots, k\}$ belongs to the MLS $\mathcal{M}(\hat{p})$ associated with the counts $\left(n_{1}, \ldots, n_{k}\right)$ if and only if

$$
\left(n_{i}+1\right) p_{j} \geq n_{j} p_{i} \quad \forall 1 \leq i \neq j \leq k
$$

Idea of the proof

Choose $\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{j}-1, \ldots, n_{k}\right)$, a neighbor of $\left(n_{1}, \ldots, n_{k}\right)$, then recall that

$$
\begin{gathered}
\operatorname{Prob}_{p}\left(n_{1}, \ldots, n_{k}\right)=\frac{n!}{n_{1}!\ldots n_{k}!} \prod_{j=1}^{k} p_{j}^{n_{j}} \\
\operatorname{Prob}_{p}\left(n_{1}, \ldots, n_{k}\right) \geq \operatorname{Prob}_{p}\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{j}-1, \ldots, n_{k}\right) \\
\Leftrightarrow\left(n_{i}+1\right) p_{j} \geq n_{j} p_{i}(1)
\end{gathered}
$$

hence, with $\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$,

$$
\mathcal{M}(\hat{p}) \subset\left\{p ;\left(n_{i}+1\right) p_{j} \geq n_{j} p_{i}, i \neq j\right\}
$$

Proof (continue)

conversly, suppose that p verifies $\left(n_{i}+1\right) p_{j} \geq n_{j} p_{i}, \forall i \neq j$, then for any \hat{p}^{\prime}, choose a neighbor $\hat{p}^{\prime \prime}$ in the direction of $\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$ then one can check that

$$
\operatorname{Prob}_{p}\left(\hat{p}^{\prime \prime}\right) \geq \operatorname{Prob}_{p}\left(\hat{p}^{\prime}\right)
$$

$\mathrm{p}^{\wedge "}$

p^{\wedge}

Motivating Examples

For $k=2$, the MLS is

$$
\mathcal{M}\left(\hat{p}=\left(\frac{n_{1}}{n}, 1-\frac{n_{1}}{n}\right)\right)=\left\{p=\left(p_{1}, 1-p_{1}\right) ; \frac{n_{1}}{n+1} \leq p_{1} \leq \frac{n_{1}+1}{n+1}\right\}
$$

$$
\text { for } k=3, \text { Left : } n=3, \text { Right : } n=10
$$

More Motivating Examples

$\mathcal{M}\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)=\left\{p ;\left(n_{i}+1\right) p_{j} \geq n_{j} p_{i}, \quad \forall 1 \leq i \neq j \leq k\right\}$
if $n_{1}=n$ and $n_{i}=0, \forall i \neq 1$ then

$$
\mathcal{M}\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)=\left\{p ; p_{1} \geq n p_{i}, \forall i \neq 1\right\}
$$

- If $n=1$, then the MLS always contains the Uniform pmf.
- The element of the MLS with Maximum Entropy is

$$
p_{1}^{*}=\frac{n}{n+k-1} \text { and } \forall 1<I \leq k, p_{l}^{*}=\frac{1}{n+k-1}
$$

If $k>n, p_{1}^{*} \leq 0.5$ to be contrasted with the estimation $\hat{p}_{1}=1$ given by the type.

Properties of the Maximum Likelihood Set

$$
\mathcal{M}\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)=\left\{p ; n_{j} p_{i} \leq\left(n_{i}+1\right) p_{j}, \quad \forall 1 \leq i \neq j \leq k\right\}
$$

Proposition

Let $\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$ be a type. The elements $p=\left(p_{1}, \ldots, p_{k}\right)$ of the Maximum Likelihood Set $\mathcal{M}(\hat{p})$ verify

$$
\begin{array}{r}
\forall 1 \leq j \leq k, n_{j}>0 \Rightarrow p_{j}>0 \\
\forall 1 \leq i, j \leq k, n_{i}<n_{j} \Rightarrow p_{i} \leq p_{j} \\
\forall 1 \leq i \leq k, \hat{p}_{i} \frac{n}{n+k} \leq p_{i} \leq \hat{p}_{i}+\frac{1}{n} \tag{3}
\end{array}
$$

More Properties of the Maximum Likelihood Set

$$
\mathcal{M}\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)=\left\{p ; n_{j} p_{i} \leq\left(n_{i}+1\right) p_{j}, \quad \forall 1 \leq i \neq j \leq k\right\}
$$

Proposition
Let $\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$ be a type. The elements $p=\left(p_{1}, \ldots, p_{k}\right)$ of the Maximum Likelihood Set $\mathcal{M}(\hat{p})$ verify

$$
\|p-\hat{p}\|_{1}=\sum_{i=1}^{k}\left|p_{i}-\hat{p}_{i}\right| \leq \frac{2(k-1)}{n}
$$

$\hat{p} \in \mathcal{M}(\hat{p})$, but no other type with denominator n is an element of $\mathcal{M}(\hat{p})$
If x_{i}, \ldots, x_{n} are independent samples with common $p m f q \in \mathcal{P}^{k}$ and type \hat{p}, then

$$
\sup _{p \in \mathcal{M}(\hat{p})}\|p-q\|_{1} \rightarrow 0 \text { as } n \rightarrow \infty \text { with probability } 1
$$

Selecting an Element from the Maximum Likelihood Set

Proposition
Let $\hat{p}=\left(\frac{n_{1}}{n}, \ldots, \frac{n_{k}}{n}\right)$ be a type and $\mathcal{M}(\hat{p})$ the MLS associated. Let $q=\left(q_{1}, \ldots, q_{k}\right)$ be a pmf such that $\hat{p} \ll q$. Then, there exists a unique element $p^{*} \in \mathcal{M}(\hat{p})$ such that

$$
D\left(p^{*}, q\right)=\min _{p \in \mathcal{M}(\hat{p})} D(p, q)
$$

Selecting an Element from the Maximum Likelihood Set (more)

Proposition
Let $\mathcal{M}(\hat{p})$ be the $M L S$ defined by the counts $\left(n_{1}, \ldots, n_{k}\right)$. For any pmf $q \gg \hat{p}$, the pmf

$$
p^{*}=\arg \min _{p \in \mathcal{M}(\hat{p})} D(p \| q)
$$

has the "monotonicity" property:

$$
n_{i}=n_{j} \quad \text { and } \quad q_{i} \geq q_{j} \quad \Rightarrow \quad p_{i}^{*} \geq p_{j}^{*} \quad \forall 1 \leq i \neq j \leq k
$$

Hence,

$$
n_{i}=n_{j} \quad \text { and } \quad q_{i}=q_{j} \quad \Rightarrow \quad p_{i}^{*}=p_{j}^{*} \quad \forall 1 \leq i \neq j \leq k
$$

Back to Language Modeling

the	56837	of	27155	in	20080
$\langle\backslash s>$	47108	to	26274	and	19579
N	36068	a	23857	's	11058
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
california-backed	1	logs	1	lengthens	1

words counts obtained from the UPENN repository database. Three first lines are the largest counts observed. $<\backslash s>$ stands for "end of sentence" and N stands for "numerical expression". This set contains $1,021,203$ words. The number of words seen at least once is 37,000 .

Rank ordered data

Zipf Law $\left(\log i, \log \frac{n_{\sigma(i)}}{n}\right)$ is a straight line with slope -1 provides a reference pmf.

Measuring Performances

To measure the efficacy of an estimate \tilde{p} of p, we compute the average codeword length (in bits) that the estimate \tilde{p} achieves on the type \hat{p}_{T} of the test set, that is

$$
\ell(\tilde{p})=\frac{1}{n_{T}} \sum_{t=1}^{n_{T}} \log \frac{1}{\tilde{p}\left(x_{t}\right)}=D\left(\hat{p}_{T} \| \tilde{p}\right)+H\left(\hat{p}_{T}\right)
$$

where n_{T} is the size of the test set, the x_{t} 's are the words of the test set and $H(\cdot)$ the Shannon entropy.

Results

	$\hat{p}_{\beta} \beta=1$	$\hat{p}_{\beta} \beta=\frac{1}{2}$	$\hat{p}_{\beta} \beta=\frac{1}{k}$	\hat{p}_{GT}					
$\ell(\cdot)$	10.21	10.21	10.52	10.19					
	$p^{*}: q=$ unif	$p^{*}: q=\mathrm{Zipf}$	$p^{*}: q=\hat{p}_{\mathrm{GT}}$						
$\ell(\cdot)$	10.21	10.20	10.19						
	$\hat{p}_{\beta} \beta=1$	$\hat{p}_{\beta} \beta=\frac{1}{2}$	$\hat{p}_{\beta} \beta=\frac{1}{k}$	\hat{p}_{GT}					
avg. $\ell(\cdot)$	10.58	10.42	11.31	10.37					
std. dev.	0.017	0.017	0.036	0.016					
	$p^{*}: q=$ unif	$p^{*}: q=\mathrm{Zipf}$	$p^{*}: q=\hat{p}_{\mathrm{GT}}$						
avg. $\ell(\cdot)$	10.58						10.40	10.37	
std. dev.	0.015	0.017	0.018						

Codeword length in bit for pmf estimates: Upper Table : $n=10^{6}$ words. Lower Table : average and standard deviation over 10 training sets with $n=10^{5}$ words. "avg." stands for average and "std. dev." stands for standard deviations.

Numerical aspects

Effective- $k \approx 600$ for $n=10^{6}$.
Minimize a convex function over a convex polyhedra in dimension 600.

Tune-up of the convex optimization package CFSQP developped by Lawrence, Zhou and Tits (1997). A C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfaying all inequality constraints.

Ongoing work

- Estimate $p\left(w_{(m+1)} \mid w_{m}\right)$ using $p(w)$ as reference pmf. Iterate.
- Estimate pmf from functions of the type.

